Table B.1: Divergence in the three different geometries handled by HERACLES.
  Cartesian Cylindrical   Spherical  
  $\nabla\cdot\vec{ P}_{x} $ $ \partial_{\rm r} P_{rr} + \nabla_{\theta,z}\cdot\vec{ P}_{r} $ $+ \frac{P_{rr}-P_{\theta\theta}}{r} $ $ \partial_{\rm r} P_{rr} + \nabla_{\theta,\phi}\cdot\vec{ P}_{r} $ $+ \frac{2 P_{rr}-P_{\theta\theta}-P_{\phi\phi}}{r} $
$\nabla \cdot {\mathbb P}=$ $\nabla\cdot\vec{ P}_{y} $ $\frac{1}{r}\nabla\cdot(r \vec{ P_{\theta}})$   $\frac{1}{r}\partial_\theta P_{\theta\theta} + \frac{1}{r}\nabla_{r,\phi}\cdot(r \vec{ P_{\theta}}) $ $+ \cot \theta \frac{P_{\theta\theta}-P_{\phi\phi}}{r}$
  $\nabla\cdot\vec{ P}_{z} $ $\nabla\cdot\vec{ P}_{z} $   $ \frac{1}{r \sin \theta}\nabla\cdot(r \sin \theta \vec{ P_{\phi}})$  


Source LaTeX | All tables | In the text