A&A 458, 965-973 (2006)
DOI: 10.1051/0004-6361:20065687
C. Chifor1 - H. E. Mason1 - D. Tripathi1 - H. Isobe1,2 - A. Asai3
1 - Department of Applied Mathematics and Theoretical
Physics, Centre for Mathematical Sciences, Wilberforce Road,
Cambridge CB3 0WA, UK
2 -
Department of Earth and Planetary Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo
113-0033, Japan
3 -
Nobeyama Solar Radio Observatory, National Astronomical Observatory of Japan, Minamimaki, Minamisaku, Nagano,
384-1305, Japan
Received 24 May 2006 / Accepted 4 August 2006
Abstract
Aims. We aim to examine the precursor phases and early evolution of a prominence eruption associated with a M4-class flare and a partial halo coronal mass ejection (CME) observed on 2005 July 27. Our main goal is to investigate the precursor eruption signatures observed in EUV, X-ray and microwave emission and their relation to the prominence destabilisation.
Methods. We perform a multi-wavelength study of the prominence morphology and motion using high-cadence and spatial resolution EUV 171 Å images from the TRACE satellite. The high-temperature flare radiative emission in soft and hard X-rays are analysed through imaging and spectral modeling with RHESSI. Complementary microwave images (17 GHz and 34 GHz) from NoRH are also investigated.
Results. The activation of the filament proceeds from one anchored footpoint. We observe "pre-eruption'' brightenings in X-ray and EUV images, close to the erupting footpoint of the prominence, being temporally correlated to the point when the prominence first enters a slow-rise phase, and then an accelerated fast-rise phase. The brightness temperature ()
of the prominence at 34 GHz is increasing during the eruption. We also find very good correlation between the prominence height-time profile and the spatially integrated soft X-ray (SXR) emission.
Conclusions. We discuss the observed precursor brightenings with respect to possible mechanisms that might be responsible for the prominence destabilisation and acceleration. Our observations suggest that reconnection events localised beneath the erupting footpoint may eventually destabilise the entire prominence, causing the eruption.
Key words: Sun: prominences - Sun: coronal mass ejections (CMEs) - Sun: flares - Sun: UV radiation - Sun: radio radiation - Sun: X-rays, gamma rays
It is widely accepted that the basic process(es) responsible for the occurrence of filament eruptions, CMEs and flares are closely related and of magnetic origin (Shibata 1999; Svestka 2001; Priest & Forbes 2002). Priest & Forbes (2002) classify all these phenomena under the same category of "eruptive flares''. Filament eruptions are one aspect of such explosive events. Filaments (referred to as prominences if observed over the solar limb) consist of cool material suspended in the corona by a core magnetic field. During eruptions, both the filament and the filament-carrying field move together (Rust 1976). When erupting filaments are associated with a CME, they are often recognised as a bright core in white light images, following a leading edge and a dark cavity (Illing & Hundhausen 1985).
Several studies (Gretchnev et al. 2006; Sterling & Moore 2004b,a) have unveiled a common pattern of filament eruptions: an initial "slow-rise phase'' (with very small acceleration), during which the filament gradually ascends, followed rather abruptly by a transition to a "fast-rise phase'' of strong acceleration. The eruption "onset'' has been defined as the transition between these two phases. It should be pointed out, however, that there are two types of "onsets'' to consider (which may well be closely related): one responsible for the start of the slow-rise, the other for the transition to the fast-rise.
Although it is generally accepted that filament eruptions are driven by the magnetic pressure unleashed during the explosion (Moore 1998; Moore & Sterling 2005), it is not yet understood what causes the magnetic pressure to decrease. The question of the trigger(s) initiating such eruptions remains open. In order to gain insight into their origins, it is paramount to closely scrutinise the very start of these events.
Based on a statistical analysis between the erupting filaments and the photospheric magnetic field, Feynman & Martin (1995) found that the filament eruptions were highly correlated with an emerging magnetic bipole and its orientation. However, by a similar study, Wang & Sheeley (1999) showed that filaments can erupt without emerging bipole, concluding that new flux might not represent a critical condition for filament destablisation. Tripathi (2005) and references therein, found that there can be different types of changes in the photospheric magnetic field - magnetic flux cancelation, new bipole emergence, evolution in a nearby pre-existing bipole - which can lead to filament eruption. Therefore, signatures of the destabilisation triggers do not seem to converge.
In this respect, multi-wavelength observations may prove useful for investigating eruption triggers by providing unique information to map their spatial and temporal locations. Several authors (Moon et al. 2004; Sterling & Moore 2005,2003; Moore et al. 2001; Sterling et al. 2001) have reported precursor brightenings in previous studies of filament eruptions. In this paper we present a multi-wavelength analysis of a well-observed prominence eruption associated with an M3.7-class flare and CME which occurred on 2005 July 27. A preliminary study of this event has been given by Chifor et al. (2006). The location and spectral coverage of the eruption render it ideal for investigating its early phases and early evolution. The prominence erupts such that its southern connected end begins to rise. We observe pre-eruption brightenings close to the rising footpoint of the prominence in X-ray images from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and extreme ultraviolet (EUV) images taken by TRACE. The prominence also becomes increasingly brighter in microwave images from the Nobeyama Radioheliograph (NoRH). We make a detailed study of the observed brightenings investigating their relation to possible eruption triggers.
In Sect. 2 we describe the observing instruments and multi-wavelength analysis for our event. Section 3 summarises the results, while a discussion and our conclusions are included in Sect. 4.
A prominence eruption occurred just over the eastern solar limb (09N
89E) between 04:00 and 05:00 UT on 2005 July 27.
Approximately 5 h prior to eruption, the prominence can first be
seen emerging from behind the limb in images taken by the EIT
(Extreme-ultraviolet Imaging Telescope; Delaboudinière et al. 1995) aboard the
Solar and Heliospheric Observatory(SoHO) in the 195 Å
(Fe XII) filter. Figure 1 displays the
running difference images taken by EIT at 195 Å before (top
panel; 04:36-04:24 UT), during (middle panel; 04:48-04:36 UT)
and after (bottom panel; 05:12-04:48 UT) the eruption. EP marks
the erupting prominence in the middle panel of
Fig. 1. The erupting prominence was associated with
a white-light CME detected by SoHO/LASCO/C2. The CME was first
reported at 04:54 UT with a linear speed of
1787 km s-1according to the LASCO CME
catalogue
.
Figure 2 shows the associated CME. The core of the
CME is marked in the middle panel (CORE) and may be identified as
the erupting prominence.
![]() |
Figure 1: Erupting prominence on 2005 July 27 observed in a running difference sequence of EIT 195 Å images. Images are taken before ( top panel), during ( middle panel) and after ( bottom panel) the eruption. EP marks the erupting prominence in the middle panel. |
Open with DEXTER |
![]() |
Figure 2:
Partial halo CME associated with the erupting prominence on
2005 July 27 observed in SoHO/LASCO/C2 images. The CME was first
reported at 04:54 UT with a speed of ![]() |
Open with DEXTER |
![]() |
Figure 3:
TRACE 171 Å images showing the 2005 July 27 prominence
eruption. Images have been rotated 90![]() |
Open with DEXTER |
The event was mainly analysed using high-cadence and high spatial
resolution TRACE EUV images taken in the 171 Å filter. TRACE
observes the Sun in difference EUV channels including one
white-light channel. The capabilities of the TRACE instrument are
described by Handy et al. (1999). Fe IX and Fe X lines
dominate the emission in 171 Å TRACE images, making them most
sensitive to temperatures of 1-2 MK. Phillips et al. (2005) have demonstrated
that the 171 Å filter also has a high-temperature response due
to continuum and Fe XX contributions. Thus, high-temperature
(10-20 MK) features, usually prominent in images taken in
the TRACE 195 Å (Fe XXIV) band and in RHESSI X-ray
images, can sometimes also be visible in the TRACE 171 images. A
detailed study of the eruption observed in TRACE images (Fig. 3) is reported in Sect. 2.2.
![]() |
Figure 4: Temporal evolution in X-rays. Left: SXR fluxes in the GOES 0.5-4 Å and 1-8 Å channels. The two dashed vertical lines mark the start and end time of RHESSI light-curves shown in the plot on the right. Right: RHESSI count rates in the energy ranges of 3-12 keV, 12-25 keV, and 25-50 keV averaged over all nine RHESSI detectors. Dashed lines indicate the period of night-time, while the time when the instrument entered the South Atlantic Anomaly is marked by dot-dashed vertical lines. Prior to entering night-time, both RHESSI shutters are out. Immediately after the data gap, the thin RHESSI attenuator comes into place. The spike observed at 05:30 UT is due to a brief removal of the thin shutter. |
Open with DEXTER |
A GOES class M3.7 flare accompanied the prominence eruption with the
soft X-ray flux intensity attaining its maximum at 05:01 UT. We used
RHESSI satellite (Lin et al. 2002) data to detect high-energy photons
emitted during the event. Time profiles of the soft and hard X-ray
(HXR) emission are shown in Fig. 4. A
small pre-eruption X-ray emission enhancement can be observed in
both GOES and RHESSI light-curves (around 03:50-04:00 UT).
Equipped with high-resolution germanium detectors, RHESSI enables a
detailed analysis of flare spectra at high energies (3 keV-17 MeV). The dynamic range in flare energies detectable with RHESSI
is made possible by a set of attenuators, or shutters (thin aluminum
disks) which can move in front of the detectors to prevent detector
saturation. RHESSI spectral modeling enables measurements of the
physical parameters (temperature and emission measure) describing
the hottest part of thermal plasma. Furthermore, non-thermal plasma
emission can be characterised by fitting models such as
bremsstrahlung from a power-law mean electron distribution. RHESSI
also has full-Sun imaging capabilities using rotating grids
to modulate the X-ray fluxes, providing a spatial resolution as low
as 2
(Hurford et al. 2002). Section 2.4 presents the
analysis of the eruption in X-rays.
The study is further complemented by NoRH (Nakajima et al. 1994) microwave images obtained at two frequencies, 17 GHz and 34 GHz. Microwave observations of the event are given in Sect. 2.5.
Table 1 summarises the basic characteristics of the observing instruments, along with the spatial resolution, imaging cadence and temporal coverage for our event observations. With the exception of the RHESSI satellite which went behind Earth and then entered Van Allen radiation belts during the eruption, all observing instruments provided full temporal coverage of the prominence eruption.
Figure 3 describes the motion of the prominence as
it appears in TRACE 171 images which have been rotated 90
clockwise such that north direction is to the right. The prominence
has a complex shape, with a southernmost observed end connected at
the limb. However, considering projection effects, it is possible
that the prominence is curved, having one connected end hidden
behind the limb, while also being connected at the observed
southernmost location through a barb. Prior to 03:55-04:00 UT no
significant motion is detected. After this time, we observe a very
gradual but noticeable rise of the southern part of the prominence.
The slow-rise can be best observed between
03:58 and
04:32 UT with a steady outward (away from the solar limb) motion of
the prominence, rising at a constant speed of
4.8 km s-1. The rising speed was calculated by measuring the
distance between the "highest'' part of the prominence (marked by
cross symbols in Fig. 3) and Sun
centre.
Table 1: Multi-wavelength instrumental coverage of the 2005 July 27 event.
At 04:28 UT, we observe a brightening emerging further
south of the prominence footpoint (marked with a diamond in
Fig. 3 at 04:34:17 UT). Between 04:29 and 04:32 UT
the sudden heating of a prominence magnetic thread was observed at
the southern connected part of the prominence (Fig. 5),
with an EUV brightening of this strand shooting upwards (away from
the limb). These brightenings appeared shortly before the transition
to an accelerated phase of the prominence at 04:32 UT. During this
quick evolution of the fast-rise phase, we observe more strands
becoming bright in EUV, threading the entire prominence.
Finally, cooling loop arcades are forming just beyond the limb, with a residual filament/prominence observed in front of them. We observe these final stages of evolution until approximately 06:00 UT.
It is known that because TRACE is not a full disk imager, its
absolute pointing is incorrect (see e.g. Gallagher et al. 2002). Therefore,
care must be taken in comparisons between TRACE observations and
other instruments such as RHESSI or NoRH. EUV images taken by EIT
come to the rescue in this respect, since the instrument provides
full disk observations. In order to correct for TRACE's pointing, we
cross-correlated the TRACE images with nearly-simultaneous EIT 195
images, following the method described by Gallagher et al. (2002). As a result,
TRACE images were shifted by 2.5
in the solar xdirection and
-22
in the solar y direction.
Because the calculated offsets are significant (especially in the ydirection), care was taken to ensure the validity of the result.
Several cross-correlations were made at different times during the
event, and the shift was found to be the same for all comparisons.
Figure 6 shows one example of EIT intensity
contours plotted over a TRACE image after correction.
![]() |
Figure 5: Fast heating of a prominence magnetic thread, rapidly moving upwards, at the prominence footpoint (indicated by right arrows), during the slow-rise phase of the eruption. The movement is suggestive: the brightened magnetic strand appears to be "cut off'' after heating. The EUV brightening feature south of the footpoint is marked by diamonds. These events occur slightly before the transition to the fast-rise phase of the eruption, which was observed at 04:32 UT. Images are marked with the corresponding universal time (UT) (upper left corner). |
Open with DEXTER |
![]() |
Figure 6:
EIT 195 Å contours superimposed on
TRACE 171 Å image after correcting for TRACE's pointing
following the method outlined in Gallagher et al. (2002). The TRACE and EIT
images are nearly simultaneous at 04:11 UT. TRACE images were
shifted by ![]() ![]() ![]() ![]() ![]() |
Open with DEXTER |
![]() |
Figure 7: Erupting filament motion as observed from TRACE 171 images. Heights of the uppermost point of the filament (represented by stars) were calculated from Sun's centre. The time profile of the filament height was fitted with a linear function between 04:02 and 04:32 UT (dashed line). From the slope of the linear fit, we calculated a speed of 4.8 km s-1 during the slow-rise phase of the eruption. Between 04:32 and 04:41 UT, the height vs. time profile was fitted with a second-order polynomial (dashed-dot-dot curve). A constant acceleration of 0.48 km s-2 was calculated for the fast-rise eruption phase. During this phase, the velocity increases linearly up to 300 km s-1. GOES soft X-rays in the 1-8 Å channels are overplotted (thick curve), showing good correlation with the height-time profile. |
Open with DEXTER |
![]() |
Figure 8: Upper panel: RHESSI spectrum (triangles) accumulated between 04:04:44 and 04:04:52 UT, using detector 4. The thermal spectrum was modeled with one isothermal component (dashed-dot-dot curve) and one Gaussian function fitting the Fe line feature (dashed-dot curve). The high-energy part of the spectrum was fitted with a broken power law bremsstrahlung component (dashed curve) with low-energy cutoff. The sum of all these models, the best-fit model, is represented by the thick, continuous curve. The fitting range used was 4-20 keV. Lower panel: fit residuals representing the number of standard deviations of the best-fit model above or below data. |
Open with DEXTER |
In order to obtain RHESSI images and spectra, one must account for
instrumental effects such as pileup. Strong pileup is more likely to
occur at high count rates, during RHESSI observations with no
attenuators in front of the detectors. Prior to entering night-time,
the shutters are out. However, during the precursor flare phases,
the countrate is not very high (less than 40 counts s-1 detector-1) while a pileup check assured a
livetime of 97% which should ensure safe observations.
Furthermore, particle precipitation events were reported just prior
to night-time, and thus we were required to carefully avoid these
effects.
We applied the Clean algorithm available in the standard RHESSI software
to reconstruct RHESSI images from grids 3, 4, 5, 6, 8 and 9 using an
integration time of 20 to 120 s. The combination of detectors,
time range and energy bins was carefully chosen in order to ensure
good spatial and temporal resolution while satisfying the
requirement that enough counts are used to make a reliable image
(according to Hurford et al. 2002, at least
photons are
required).
RHESSI spectral analysis during the precursor emission was also
performed. Spectra were obtained using 1/3 keV energy bins at
energies less than 25 keV and 12 s time intervals. Spectral
fitting was achieved using the Object Spectral Executive (OSPEX)
which has recently incorporated the CHIANTI (Landi et al. 2006) atomic
code into its software. Prior to fitting, background was subtracted
from night-time intervals, avoiding the particle precipitation
events. The thermal plasma emission was modeled with an isothermal
component (describing the free-free and free-bound continuum) and
one Gaussian function to fit the 6.7 keV Fe line feature
(method described in detail by Phillips et al. 2006). The temperature and
emission measure parameters were derived from the slope of the
thermal continuum model. The observed high-energy emission (10 keV) was fitted with a non-thermal component which has a
power-law distribution
)
,
where
represents the power-law
index of the spectrum. An example of a fitted RHESSI spectrum using
detector 4 between 04:04:44 and 04:05:52 UT is given in
Fig. 8. The fitting shows that, at
energies above 10 keV, the non-thermal contribution is predominant
over the thermal component.
The thermal energy of the RHESSI source may be estimated using the
temperature and emission measure derived from spectral modeling and
the following expression:
![]() |
(1) |
Moreover, we note that hard X-ray bursts (above 25 keV) detected with RHESSI occur well past the start of the fast-rise phase (at about 04:55 UT), as shown in Fig. 4.
The left panels of Fig. 9 show the TRACE and NoRH images
taken at 04:02 UT. The shape of the prominence observed in NoRH
microwave images is roughly the same as that in TRACE EUV images. In
the right panel of Fig. 9 we present the time profile of the
34 GHz
averaged over the selected region represented in the
left panels of Fig. 9. We can see that
starts to
increase in both frequencies at
03:50 UT, approximately at
the slow-rise onset. However, it is difficult to determine exactly
the start time of the increase due to the noise level of about
1000 K. In particular, the 34 GHz images include artificial
modulation patterns due to the side lobe.
On the other hand, we often observe non-thermal emissions associated
with strong energy release processes at these frequencies. The
emission mechanism is mainly gyrosynchrotron radiation. Although we
have found evidence of non-thermal emission in RHESSI X-ray observations (as discussed
in Sect. 2.4), we cannot identify the corresponding non-thermal
emission in microwave images at the slow-rise onset. However, in
order to detect non-thermal effects in microwave emission, the
emitting electrons would need to have very high energies of several
hundred keV to MeV, depending on the magnetic field strength. We
argue that the electron acceleration is not strong enough to
generate the microwave emission at this stage.
![]() |
Figure 9:
Upper left: A NoRH 34 GHz contour superimposed on a
TRACE 171 image taken at 04:02 UT (corrected for TRACE pointing).
Both the NoRH contour and the TRACE image have been rotated 90![]() ![]() ![]() ![]() |
Open with DEXTER |
Non-thermal brightenings in the microwave images are observed later, after 04:40 UT, during the fast-rise phase. Figure 10, showing 34 GHz contours overplotted at 04:44 UT on a TRACE image, indicates the site of the non-thermal emission at this time.
![]() |
Figure 10:
NoRH 34 GHz contours overplotted on a
near-simultaneous TRACE image (which has been corrected for
pointing) at 04:45:41 UT showing the site of the non-thermal
brightening during the fast-rise phase of the eruption. Both NoRH
contours and corrected TRACE image have been rotated 90![]() |
Open with DEXTER |
Table 2: Multi-wavelength observations time-line summary of the 2005 July 27 event.
Despite lacking direct information about the magnetic configuration of the eruption site (the filament being situated on the limb), we discuss our results in the context of eruption trigger mechanisms proposed in the literature, based on emission signatures of magnetic processes such as reconnection. Breakout models (Antiochos 1998) predict that reconnection occurs high above the prominence before the eruption. Tether-cutting mechanisms (see e.g. Moore & Roumeliotis 1992) imply that reconnection beneath the prominence unleashes the explosion. Prior to the explosion, the core magnetic field suspending the filament is in force-free equilibrium (Moore & Sterling 2005), the magnetic pressure being balanced by the field's own magnetic tension as well as tension and pressure from surrounding fields.
The prominence eruption on 2005 July 27 is consistent with the double-phased evolution of previous filaments studied by e.g. Sterling & Moore (2004b,2005,2003,2004a) and Gretchnev et al. (2006). The first question refers to the onset of the slow-rise phase of the prominence eruption. The small X-ray enhancement seen in GOES and RHESSI light-curves corresponds in time with the observed slow-rise onset. From RHESSI spectral analysis we found evidence at this time of hot plasma with energies above 10 keV and non-thermal particles. We infer that a reconnection event happened at the time of the X-ray brightening, destabilising the prominence which proceeded to a slow-rise phase. The reconnection apparently occurred not in the overlying loop arcades, as would be predicted by breakout model, but beneath its southern footpoint, a scenario which is more similar to the tether-cutting representation.
Previous evidence of both thermal and non-thermal emission in the pre-flare phases of an impulsive GOES class X flare has also been found by Asai et al. (2006), indicating that the early energy release mechanism may be accompanied by particle acceleration. Asai et al. (2006) argued that, although with a milder effect, non-thermal emission present in pre-flare phases may also be present in the early stages of milder flares, such as the flare accompanying the 2005 July 27 event.
The second issue to address is what causes the transition from the slow, steady motion of the prominence to the fast, accelerated motion. We observe a suggestive EUV bright filament strand just before the onset of the fast-rise phase. The magnetic field line associated with the observed upward shooting strand appears as if it were suddenly cut off, while the anchored, slow-rising prominence is unleashed and begins to accelerate. Our interpretation is that the bright strands observed in EUV threading the prominence must be heated during the fast-rise phase indicating that these field lines undergo further reconnection. We propose the following scenario for the prominence evolution during the fast-rise phase:
It has been argued before that reconnection and eruption may be coupled dynamically (Ohyama & Shibata 1997; Zhang et al. 2001; Chen & Shibata 2000). We suspect that the signature of reconnection observed just before the onset of the fast-rise phase (the EUV upward shooting strand) may be closely related to the eruption having been already triggered (and in the slow-rise phase).
Several 2D (2.5D) eruption scenarios proposed in the literature involve emerging flux (e.g. Chen & Shibata 2000; Lin et al. 2001). One may criticise these models since emerging flux can never be as long as the filament channel itself (the models being restricted to 2D). From our analysis, we infer that reconnection, which may or may not be associated with an emerging flux, could in fact destabilise the entire prominence (even initially localised only at one footpoint).
We believe that brightenings in EUV (which indicate heating) are common in the pre-eruption stages of filaments (Moore et al. 2001). However, there are insufficient studies performed with high-cadence data to reach a final conclusion. We are also uncertain of how often the observed heating is located beneath the erupting prominence. Sterling et al. (2001) examined the pre-eruption activity of a quiet-region filament, finding the acceleration phase of the filament starting before they observe an EUV brightening under the erupting filament (reconnection was seen as a by-product of the eruption). However, Sterling & Moore (2004a) assessed the findings of Sterling et al. (2001) as possibly premature, due to the poor cadence provided by EIT. Their subsequent analysis of the same event was also inconclusive as to whether reconnection began early enough to cause the fast-rise phase of the eruption.
Moon et al. (2004) have also examined the initial stages of a
flare-associated filament eruption in high-cadence and high
resolution UV, H
images as well as magnetograms, correlating
the pre-flare activity with canceling magnetic features (CMFs) in
the photospheric field. Moon et al. (2004) concluded that the transient
precursor brightenings observed near one footpoint of the filament
are consequences of low-atmosphere magnetic reconnection. The
analysis of our prominence has revealed evidence of high-energy
(above 10 keV), probable non-thermal photons in the pre-eruption
stages of the flares, which would imply that magnetic reconnection
occurred higher in the corona in order for this emission to be
detected.
We know of only one recent study that has used high-cadence TRACE data to resolve pre-eruption brightenings (Sterling & Moore 2005). Most previous studies (Sterling & Moore 2003,2004a), using EIT data with worse time cadence, might have failed to observe such pre-eruption features.
We found that the height-time profile of the erupting prominence correlates very well with the time profile of soft X-ray emission peak detected by GOES. Zhang et al. (2001) also report a good correlation between the SXR flare lightcurves and the motion of associated CMEs. Kundu et al. (2004), however, have found that the fast-rise phase of an erupting filament ceases 30 minutes before the peak of the X-ray emission. In our analysis, the erupting prominence follows the motional pattern of flare-associated CMEs (Zhang et al. 2001).
Although 2D EUV and microwave images of the prominence may suggest
an asymmetric eruption (one southern end rising while the other
remains fixed), it is difficult to infer how much the prominence
extends behind the limb. Therefore, we do not dismiss the
possibility that the observed southernmost part of the prominence
represents a barb by which the prominence is initially connected,
while its other end (invisible to the observer) is connected behind
the limb. H images taken by the Kanzelhöhe Solar
Observatory
several days after the eruption show a relatively complex structure
of the filament channel, most likely residing at the same location
of the erupted prominence. Therefore, we are reluctant to classify
this eruption as an asymmetric one. Discussing 3D scenarios of
filament eruptions in both a symmetric and an asymmetric case,
Tripathi et al. (2006) have addressed the issue of what might cause either of
these event types. While an emerging bipole detected in magnetograms
at the middle of the symmetric filament channel was found to be a
likely trigger for this eruption, no conclusive observations were
reported in the asymmetric case. Regardless of the type of eruption
- symmetric or asymmetric - to the best of our knowledge, the
present work provides the first detailed multi-wavelength
investigation of the early phases and evolution of a prominence
eruption.
From previous studies of eruption triggers (e.g. Sterling & Moore 2005), as well as from the present analysis, it became clear that high-resolution and high-cadence observations in multi-wavelength emission (chromospheric, transition region and coronal) are required. At present, TRACE images in EUV, complemented by X-ray spectral and imaging RHESSI data as well as microwave NoRH images allow for a detailed analysis. It is expected that future missions such as STEREO, capable of revealing the 3D configuration of prominences, and SOLAR-B, providing high spatial and temporal resolution images and magnetograms, will further our understanding of filament eruption initiation and its relationship to flare and CME triggers.
Acknowledgements
The authors wish to thank the anonymous referee for a careful reading of our manuscript and the useful suggestions. We acknowledge the use of data from TRACE, SoHO, RHESSI, GOES and NoRH. TRACE and RHESSI are NASA Small Explorer missions. SoHO is an international cooperative project between ESA and NASA. We thank Brian Dennis for help with RHESSI data analysis and Peng-Fei Chen for useful comments and suggestions. CC is grateful for scholarship support received from the University of Cambridge Overseas Trust, an Isaac Newton Studentship from the Cambridge Institute of Astronomy and an Overseas Research Student Award. DT and HEM acknowledge support from PPARC. HI is funded by a Research Fellowship offered by the Japan Society for the Promotion of Science for Young Scientists.