A&A 457, 809-821 (2006)
DOI: 10.1051/0004-6361:20064845
P. Sánchez-Blázquez1,2 - J. Gorgas2 - N. Cardiel2,3 - J. J. González4
1 - Laboratoire d'Astrophysique, École Polytechnique Fédérale de Lausanne (EPFL),
Observatoire, 1290 Sauverny, Switzerland
2 -
Dpto. de Astrofísica, Fac. de Ciencias Físicas, Universidad
Complutense de Madrid, 28040 Madrid, Spain
3 -
Calar Alto Observatory, CAHA, Apartado 511, 04004 Almería,
Spain
4 -
Instituto de Astronomía, Universidad Nacional Autónoma de
México, Apdo-Postal 70-264, México D.F, México
Received 11 January 2006 / Accepted 26 April 2006
Abstract
Aims. This is the second paper of a series devoted to the study of the stellar content of early-type galaxies. The goal of the series is to set constraints on the evolutionary status of these objects
Methods. We use a new set of models that include an improved stellar library (MILES) to derive simple stellar population (SSP)-equivalent parameters in a sample of 98 early-type galaxies. The sample contains galaxies in the field, poor groups, and galaxies in the Virgo and Coma clusters.
Results. We find that low-density environment galaxies span a larger range in SSP age and metallicity than their counterparts in high density environments, with a tendency for lower
galaxies to be younger. Early-type galaxies in low-density environments appear on average
1.5 Gyr younger and more metal rich than their counterparts in high density environments. The sample of low-density environment galaxies shows an age-metallicity relation in which younger galaxies are found to be more metal rich, but only when metallicity is measured with a Fe-sensitive index. Conversely, there is no age-metallicity relation when the metallicity is measured with a Mg sensitive index. The mass-metallicity relation is only appreciable for the low-density environment galaxies when the metallicity is measured with a Mg-sensitive index, and not when the metallicity is measured with other indicators. On the contrary, this relation exists for the high-density environment galaxies independent of the indicator used to measure the metallicity.
Conclusions. This suggests a dependence of the mass-metallicity relation on the environment of the galaxies. Our data favour a scenario in which galaxies in low density environments have suffered a more extended star formation history than the galaxies in the Coma cluster, which appear to host more homogenous stellar populations.
Key words: galaxies: abundances - galaxies: elliptical and lenticular, cD - Galaxy: stellar content - Galaxy: formation
The knowledge of the star formation history of early-type galaxies is a key test of our understanding of the galaxy formation processes. The classic vision of elliptical galaxies as old objects forming their stars at high redshift in a single episode has been questioned by several studies of stellar population in these systems, which found a high fraction of early-type galaxies with apparent young ages (e.g., González 1993; Trager et al. 1998; Trager et al. 2000b; Terlevich & Forbes 2002; Sánchez-Blázquez 2004).
The semi-analytical models of galaxy formation (Kauffmann 1996; Baugh et al.
1996; Cole et al. 1994; Somerville et al. 1999; de Lucia et al. 2006), in
the framework of the cold dark matter (CDM) cosmological model and in the current
standard CDM,
predict extended star formation histories for early-type galaxies,
with substantial fractions of the stellar population formed at relative low
redshift, in agreement with the observed trends. The numerical simulations
based on the semi-analytical models can impressively reproduce various features
of large-scale structures from dwarf galaxies to giant galaxies and rich
clusters of galaxies (e.g., Steinmetz & Navarro 2002; Klypin et al. 2003).
One of the keys to test the hierarchical scenarios is to study the
properties of galaxies situated in different environments, since the
semi-analytical models predict that galaxies in dense clusters were assembled
at higher redshift than galaxies in the field and poor groups.
This is the second paper of a series devoted to the study of the stellar
content in nearby early-type galaxies. The final aim of the series is to
constrain the formation epoch of the stellar population in this kind of
galaxies as a function of mass and environment. The first paper of the series
(Sánchez-Blázquez et al. 2006a, hereafter Paper I) analysed the relation
of the central line-strength indices with the velocity dispersion for a sample
of 98 galaxies drawn from different environments.
It also presented some
evidence of differences in the stellar content of galaxies in different
environments. In particular, we found that the index-
relations are
driven by both age and metallicity in the sample of galaxies in low-density
environments and in the Virgo cluster.
However, an age variation with
is not required to explain the
index-
relations for galaxies belonging to the Coma cluster. We also
presented evidence supporting the idea that the [Mg/Fe], [N/Fe], and probably [C/Fe] ratios increase with the velocity dispersion of the galaxy in both subsamples.
In Paper I, we studied the scatter in the index-
relations, finding
that it is not only a consequence of a dispersion in the age of the galaxies,
but that it is also due to variations of the [Mg/Fe] ratio. These variations are
related to the mean ages of the galaxies, in the sense that younger galaxies
exhibit, on average, lower [Mg/Fe] ratios. Furthermore, galaxies in the Coma cluster
show, on average, higher [Mg/Fe] ratios than galaxies in lower
environment. We also detected systematic differences in the values of
some indices, which were interpreted as differences in chemical abundance
ratios between both subsamples.
In Paper I we analysed the raw line-strength indices and their relation with other parameters. In this paper, we compare these indices with the predictions of the stellar population synthesis models by Vazdekis et al. (2006, in preparation, hereafter V06) to derive central simple stellar population (SSP) parameters for our sample of galaxies.
The outline of this paper is as follows. Section 2 details the estimation of age and metallicities. In Sect. 3 we study the mean values of these parameters and their differences as a function of the environment. In Sect. 4 we analyse the most likely scenarios to explain the dispersion in the ages of the galaxies. Section 5 presents a discussion of the age-metallicity relation for the galaxies in both environments, and in Sect. 6 we study the relation of the age and metallicity with the velocity dispersion. In Sect. 7 we present a brief discussion of the results, and Sect. 8 summarises our findings and conclusions.
The sample consists of 98 galaxies, out of which 35 belong to the rich cluster of Coma (high-density environment galaxies, hereafter HDEGs), and the rest are galaxies in the field, in groups or in the Virgo cluster (low-density environment galaxies, hereafter LDEGs). For a detailed description of the sample we refer the reader to Paper I.
Previous works have used Lick/IDS line-strength indices to derive mean ages and
metallicities using evolutionary synthesis models (e.g., Worthey 1994; Buzzoni
1995; Bruzual & Charlot 2003; Thomas et al. 2003). Here we
follow a similar approach, deriving the SSP parameters (age and metallicity)
by comparing the observed line-strengths with the predicted index-index
diagrams from a new set of models by V06. These models are an updated
version of those described by Vazdekis et al. (2003), improved by the inclusion
of
a new stellar library (MILES) recently observed by
Sánchez-Blázquez et al. (2006b). This library contains 1003 stars,
carefully selected to cover the atmospheric parameter space in an homogenous
way. In particular, the library span a range of metallicities from
to +1.0 and a wide range of effective temperatures. The inclusion of
this library reduces the uncertainties in the models, especially at
metallicities departing from solar. Since the stars of the library are
relatively flux calibrated, these models are able to predict not only
individual features for a population of a given age and metallicity, but also the
whole spectral energy distribution (SED). This allows us to analyse the spectra
of the galaxies at their own resolution, given by their internal velocity and
instrumental broadening (see, e.g., Vazdekis et al. 2001). The synthetic
spectra have a spectral resolution of 2.4 Å and cover the spectral range
3500-7500 Å.
In spite of this capability, as we are using calibrations based on the Lick system, and to compare our results with previous studies, most of the analysis has been performed with the indices transformed into the Lick system. Therefore, we also broadened the synthetic spectra to match the wavelength dependent resolution of the Lick stellar library (Worthey & Ottaviani 1997) and measured the indices in the same way as in the galactic spectra. We then added the same offsets that we applied to the galaxy indices to the synthetic indices. (see Paper I for details).
Figure 1 shows several index-index diagrams combining different pairs of indices. Over-plotted are the stellar population models of V06 for various ages and metallicities, as indicated in the figure caption. Open and filled symbols represent LDEGs and HDEGs, respectively. It is clear from the figure that galaxies span a fair range in their mean ages. This result has been previously found by other authors (González 1993; Trager et al. 1998; Trager et al. 2000a), and it is in contradiction to the classical vision of early-type galaxies as old and coeval systems.
![]() |
Figure 1:
Line strengths of LDEGs (open symbols) and HDEGs (filled symbols)
through the central aperture. The distinct symbols indicate different kind
of galaxies: triangles correspond to dwarf ellipticals, squares to
lenticulars, and circles to normal ellipticals. Model grids from V06 have
been superposed: solid lines are contours of constant age (1.0, 1.41, 2.00,
2.82, 3.98, 5.62, 7.98, 11.22, and 15.85 Gyr), and dashed lines are contours of
constant [M/H] ([M/H] = -0.68, -0.38, 0.0, and +0.2 dex). The arrows indicate
the direction of increasing age and metallicity. Three different metal
indicators (CN2, Fe4383, and Mgb) are combined with three different
age-sensitive indexes (H![]() ![]() |
Open with DEXTER |
To quantify the age and metallicity values, we interpolated in the grids using
bivariate polynomials, as described in Cardiel et al. (2003).
Although the highest metallicity modeled by V06 is
,
to obtain metallicity values for the maximum number of galaxies, we
extrapolated the predictions up to
.
However, all the
values above
have to be considered more uncertain.
The errors in age and metallicity were calculated as the differences between
the central values and the values at the end of the error bars, which give an
upper limit to the real errors. Table 1 lists the
ages and metallicities derived from several index-index diagrams, all of them
combining H
with other metal-sensitive indices. The empty spaces in the
table indicate that the galaxy lies outside the model grid, and therefore no
measurements of age and metallicity have been made. The ages and metallicities
presented here represent simple stellar population equivalent parameters, and
thus, if all the stars were not formed in a single event,
they represent values weighted with the luminosity of the stars and do not
necessarily reflect the age and the metallicity of the bulk of the stars in
the galaxy. We have used H
as the main age indicator since the other
higher-order Balmer lines (H
and H
)
are very sensitive to
/Fe ratio changes at super-solar metallicities (Thomas et al. 2004).
For all these reasons, in this work we do not attempt to derive relative abundances of the different elements. However, with the aim of exploring the behaviour of the different chemical species, we measure the metallicity using several indices that are especially sensitive to variations of different elements.
For the rest of the analysis, we make the assumption that the differences
between the metallicities derived from various index-index diagrams, combining
H
with other metallicity indicators, are due to changes in the
sensitivity of these indicators to variations of different chemical abundances.
It is also clear from Fig. 2 that the age dispersion for less massive galaxies is higher than for the more massive ones, in agreement with other studies (e.g., Bender et al. 1993; Bressan et al. 1996; Worthey 1996; Mehlert et al. 1998; Vazdekis & Arimoto 1999; Jørgensen 1999; Smail et al. 2001; Caldwell et al. 2003).
The age and metallicity values of the synthetic spectra that best reproduce the
observed spectra were calculated by minimising the residual rms (obtained
as the differences between the observed and the synthetic spectra in the region
3650-5150 Å). Internal reddening has not been taken into account
in this analysis.
The estimation of the synthetic spectra that best reproduce
the observed is affected by the age-metallicity degeneracy. To show
this, in Fig. 5, we have represented
a grey-scale diagram
with the rms of the residuals in the comparison of the synthetic spectra of
different ages and metallicities with the spectrum of the galaxy NGC 4467.
For this reason,
we have computed the age and the metallicity by averaging the 9 best solutions
weighted with
the inverse of the residual variance of the comparison with the synthetic
spectra. The last column of Table 1 shows the ages
and metallicities obtained in this way for the sample of galaxies.
It has been seen in Sect. 3 that
the LDEGs span a broad range in their apparent mean ages and that, in some cases,
these ages are very low. Since the models assume a
unique burst of star formation, these low values can indicate either that these
galaxies are genuinely young, i.e., they formed all their stars
recently, or that most of their stars were formed at early epochs, but that
they have undergone later episodes of star formation involving a certain percentage
of the total mass of the galaxy (see Trager et al. 2000b). In the latter case,
the apparent mean age would depend on the relative light contributions of the
different components to the considered spectral range.
To distinguish between the two scenarios, we carried out a
comparison of the observed galaxy spectra with the synthetic spectra
extracted
from the V06 models in two different wavelength ranges: 3650-4050 Å and
4750-5150 Å.
The ages and metallicities were calculated combining the values of the 9 synthetic spectra that best reproduced the observed spectra in each wavelength
interval, as explained above. Figures 6 and 7
show the age distributions obtained in both wavelength ranges for LDEG and HDEG,
respectively. It is apparent from Fig. 6 that, for LDEGs, there
is a significant difference between the ages obtained in the two different
regions of the spectra. This is difficult to understand if all the stars were
formed in a single burst, and it suggests that many LDEGs are composite systems
consisting of an underlying old population plus, at least, a later star
formation burst.
![]() |
Figure 2: Relations between metallicities, obtained with different indicators, and age against velocity dispersion for the sample of galaxies. Open symbols represent galaxies in low-density environments (LDEGs), while filled symbols indicate galaxies in high density environments (HDEGs). Squares correspond to S0 galaxies, while elliptical galaxies are represented with circles. Grey and black lines show the linear fit, weighting with the errors in both axes, to the LDEGs and HDEGs respectively. |
Open with DEXTER |
Table 2:
Slopes of the linear fits (b) and their errors ()
of the
different parameters in Fig. 2 with the central velocity
dispersion. The left side ofthe table shows the values for the LDEGs, while
the right side of the table, the values for the HDEGs. The last two columns
show the result of a t-test to verify if the slopes of both subsamples of
galaxies are different. In particular, the last column shows the probability
that the slopesof HDEGs and LDEGs are different by chance.
![]() |
Figure 3: Relation of the age with the velocity dispersion for galaxies in the Coma cluster, Virgo cluster, and galaxies in the field and poor groups. |
Open with DEXTER |
![]() |
Figure 4: Comparison of the observed spectra of the galaxies NGC 4467 and NGC 3605 (black line) and the synthetic spectra from V06 (grey line). The lower panels show the difference between both spectra. The parameters of the synthetic spectra are shown in the panel. |
Open with DEXTER |
![]() |
Figure 5: Grey-scale diagram of the standard deviation in the residuals of the comparison of different synthetic spectra with the spectrum of NGC 4467. Darker squares represent lower residuals. The numbers indicate the combination of age and metallicity of the 9 best solutions, ordered from the lowest standard deviation (1) to the highest (9). |
Open with DEXTER |
![]() |
Figure 6: Distribution of ages obtained comparing the synthetic spectra from V06 with the spectral energy distribution of LDEGs. The empty histogram shows the ages obtained with the comparison in the spectral range 4750-5150 Å, while the shaded histogram the ages obtained comparing the region from 3650-4050 Å. |
Open with DEXTER |
![]() |
Figure 7: Distribution of ages obtained by comparing the synthetic spectra from the models of V06 with the observed spectra for the sample of HDEGs. The empty histogram represents the ages obtained in the spectral range 4750-5150 Å while the shaded histogram shows the calculated ages in the spectral range 3650-4050 Å. |
Open with DEXTER |
![]() |
Figure 8: Comparison of the ages derived in two different spectral ranges using the models of V06. The asterisks are the values calculated for the LDEG spectra, while the filled circles are the ages derived from the composite models in which two populations of different ages and metallicities are added (see text for details). The solid, dashed, and dotted lines connect the various two-component model combinations for the 30:70, 20:80, and 10:90 young:old population mass ratios, respectively. The age of the younger component increases from lower left to upper right of the diagram. |
Open with DEXTER |
![]() |
Figure 9: Differences between the fraction of light contributed by a burst of star formation with metallicity Z=+0.2 in two different spectral ranges (4750-51500 Å) and (3650-4050 Å) when added to a population of age = 15.85 Gyr and metallicity Z=-0.38for different ages of the burst. |
Open with DEXTER |
Table 3: Fraction of light contributed by a burst of star formation with a metallicity [M/H]=+0.2 and a strength of 20% in mass, in a galaxy with an age 15.85 Gyr and a metallicity [M/H]=-0.38 for different ages of the burst.
On the other hand, the distribution of ages for HDEGs (Fig. 7) shows no such clear dichotomy (see mean values in the insets). This is compatible with the idea that these galaxies constitute a more homogeneous (coeval) sample that have undergone their last episode of star formation at higher redshift. This interpretation is in agreement with our findings in Sánchez-Blázquez et al. (2003) and in Paper I.
![]() |
Figure 10:
Age-metallicity relation for LDEGs when the age and metallicity
are derived from a Fe4383-H![]() |
Open with DEXTER |
Figure 10 shows this correlation for LDEGs when the age and
metallicity are derived from a Fe4383-H
diagram. It is clear from this
diagram that younger galaxies also appear to be more metal rich. However,
when age and metallicity are measured in a partially degenerated index-index
diagram,
the correlation of the errors in both parameters tends to create an artificial
anti-correlation between them (Kuntschner et al. 2001), so it is difficult to
disentangle whether the relation is real or an artifact due to the age-metallicity
degeneracy. To check if the correlation of the errors could be the reason for
the observed trend in our sample, we carried out a similar test to that
performed by Kuntschner et al. (2001). We chose to model three different populations
with the following characteristics:
We then performed a linear fit to quantify the slope of the relations in both
the fake distributions and the galaxies. The errors in the slope were estimated
using Monte Carlo simulations in which we generated N elements, (N being
the number of points), where some data appear duplicated and others not. The
final error was obtained as the standard deviation of the slopes in 1000 different simulations. The final results are shown in Table 4.
We performed a t test to check whether the slopes of the simulations were
compatible with the slope of the LDEGs data. A t value higher than 1.96
allows us to reject the hypothesis of equal slopes with a significance level
lower than 0.05. As can be seen, the slopes defined by the populations 2 and 3 are not compatible with the slope of LDEGs. However, the slope obtained for
the first distribution of constant age and metallicity is marginally compatible
with the one obtained from the data (although the probability that the slopes
are different is >95%). Nevertheless, none of the three models can
reproduce the dispersion in age and metallicity observed in the sample of
LDEGs. We then conclude that, although the correlation of the errors can
explain the existence of an age-metallicity relation in a distribution of
galaxies with constant age and metallicity, it cannot explain the observed
dispersion in these parameters. If we try to reproduce the dispersion by
simulating populations with a range in age or metallicity, the slope of the
relation does not reproduce the slope obtained for the real galaxies. This
indicates that part of the relation has to be real, and not only a consequence
of the correlation of errors, although the actual value of the slope can be
modified by this effect.
Another way to verify if the relation is an artifact of the error correlations
is to represent the age versus the metallicity obtained in two completely
independent index-index diagrams. Figure 12
shows the age-metallicity relation where the ages have been measured in a
H-Fe4531 diagram and the metallicities in a H
-Fe4383
diagram. A non-parametric Spearman rank-order correlation test gives a
correlation coefficient of -0.47 corresponding to a significance level of
0.0002. Although the slope of the relation is flatter (
)
than
the one obtained by measuring the ages and metallicities in a Fe4383-H
diagram, there is still a significant correlation, which confirms that the
age-metallicity relation is not entirely due to the correlation of the errors
in both parameters.
The age-metallicity relation for HDEGs is plotted in Fig. 13 (see also Table 4). For
comparison, we have also plotted the relation for the LDEGs (dashed line). As
can be seen, the relation for HDEGs seems to be slightly flatter than for the
LDEGs, although a t-test does not allow us to discard the possibility that
they are equal within the errors. However, in Paper I we showed that
to explain the relation of the indices with
for the HDEGs, a variation
of the age along the mass sequence was not necessary. Thus, if the
age-metallicity relation is a consequence of recent star formation events (in
which the younger stars have been formed from a more enriched gas), we would
not expect to find this age-metallicity relation for the HDEGs.
To verify whether the results obtained here are compatible with the relations of the
indices with
reported in Paper I, we carried out the following
experiment:
![]() |
Figure 11:
Top panels: index-index diagrams for 3 different fake
populations with the following characteristics: from left to right, (1)
age 8 Gyr and solar metallicity [M/H] = 0; (2) age 8 Gyr and metallicity
between 0.0<[M/H]<0.06; (3) age between 5.6 and 10 Gyr and solar
metallicity [M/H]=0. Small dots represent the results of the Monte Carlo
simulations in which each point was perturbed following a Gaussian
distribution with a standard deviation given by the typical error in Fe4383 and
the H![]() |
Open with DEXTER |
Table 4:
Slopes of the age-metallicity relation calculated in the
Fe4383-H
diagram for the three described distributions (see text), and
for the LDEGs and HDEGs. The last two columns show the dispersion in age and
metallicity for the different distributions and the subsamples of observed
galaxies.
![]() |
Figure 12: Comparison of the ages and metallicities obtained from completely independent diagrams for the LDEGs. The line represents a least-square fit, minimizing the residuals in both directions, x and y. |
Open with DEXTER |
![]() |
Figure 13:
Age-metallicity relation for HDEGs, where the age and the
metallicity have been measured in a Fe4383-H![]() |
Open with DEXTER |
![]() |
Figure 14:
Relation between the age and metallicity obtained for a mock
distribution of points following the index-![]() |
Open with DEXTER |
![]() |
Figure 15: Age metallicity relation for HDEGs where the age and the metallicity have been obtained from two independent diagrams. The line represent a least-square fit minimising the residuals in both directions, x and y. |
Open with DEXTER |
The hierarchical clustering models of structure formation
predict different star formation histories
for galaxies situated in different environments (Baugh et al. 1996; Kauffmann
& Charlot 1998; de Lucia et al. 2006). In these models,
clusters of galaxies are formed from the
highest peaks in the primordial density fluctuations. It is there where the
merging of dark matter haloes, which contained the first galaxies, leads to
galaxies dominated by a bulge at high redshifts (). The mergers of
galaxies and the acquisition of cold gas cannot continue once the relative
velocity dispersion between galaxies is higher than 500 km s-1, which
makes the occurrence of further star formation episodes in these galaxies more
difficult. This truncated star formation history also explains the higher
[Mg/Fe] found in HDEGs with respect to the values in younger looking LDEGs
(Paper I).
On the other hand, the star formation in LDEGs has probably extended over a longer period of time, due to the occurrence of more star formation events or due to a longer single episode of star formation. This scenario was proposed to explain the differences between N, and maybe C, when comparing galaxies in different environments (Sánchez-Blázquez et al. 2003; Paper I).
We speculate that LDEGs and HDEGs could have initially presented similar
relations between the metallicity and the velocity dispersion after their first
massive star formation episode.
However, if LDEGs have suffered subsequent episodes of star formation, the
original correlation between metallicity and potential well (or mass) could
have been erased,
since other processes could have also played a role in defining the final
metal content of the galaxies. The new stars, formed in the more recent
events, would do it from a gas more enriched in the elements produced by low-
and intermediate-mass stars, due to the higher active evolution timescale of
these galaxies.
If these star formation procesess have had a greater relative influence (a
larger ratio between the burst strength and the total galaxy mass) in less
massive galaxies, as suggested by the age-
relation, this would
destroy the original relation between mass and metallicity
(increasing Fe, C, and N in low velocity dispersion galaxies).
Furthermore, this would result in a relation between age and metallicity
(as inferred from Fe features) in LDEGs, but not in HDEGs, as it is found
in this paper.
Another posibility is that less massive galaxies have actually experienced a
more extended star formation history than more massive galaxies (Chiosi &
Carraro 2002). This latter possibility is favoured by some recent studies that
found a depletion in the luminosity function of red galaxies towards the faint
end (Smail et al. 2001; de Lucia et al. 2004).
![]() |
Figure 16:
Age-metallicity relation for the sample of low-density environment
galaxies when these parameters are measured in a Mgb-H![]() |
Open with DEXTER |
Other authors have found differences between the mass-metallicity relation of galaxies in different environments. Trager et al. (2000b) found that there is a velocity dispersion-metallicity relation for old cluster galaxies, but no comparable relation exists for field ellipticals. This result is compatible with ours, with the difference that we still find a steep relation between the metallicity and the velocity dispersion for LDEGs when the metallicity is measured with Mgb. Actually, Trager et al. also found a relation between what they called the enhanced elements (including Mg) and velocity dispersion for all the galaxies in their sample.
If, as we have argued, the age-metallicity relation is a consequence of later
episodes of star formation, and the relative enrichment has been more
pronounced in the Fe-peak elements, we would expect differences in
the age-metallicity relation when the metallicity is measured using
an index with a different sensitivy to changes in Fe and Mg.
Figure 16
shows the age-metallicity relation when these parameters are measured in a Mgb-Hdiagram. The non-parametric rank order coefficient is 0.177, with a significance level of 0.10. Certainly, there is not a significant correlation between these two
parameters when the Mgb index is used instead of Fe4383. We need to
stress again that we are not calculating chemical abundances in this paper. The
metallicity measured with Mgb does not correspond to the abundance of Mg,
nor does the metallicity
measured with Fe4383 correspond to a Fe abundance. We argue though, that the different behaviours of
the metallicities calculated with different indices are the consequence of their
different sensitivities to the variation of different chemical species. In this specific case,
the flatter slope of the age-metallicity relation when a more (less) sensitive Mg (Fe)
index is used is in agreement with our
scenario.
Interestingly, the more massive galaxies in low density environments show a
behaviour very similar to the massives galaxies of the Coma cluster. These
very massive galaxies tend to have boxy isophotes, which can be explained by
models of mergers without gas (Binney & Petrou 1985; Bender & Möllenhoff
1987; Nieto & Bender 1989; Nieto et al. 1991; Bender et al. 1992; Faber et al. 1997; Lauer et al. 2005), since a few percent of the
mass in gas is sufficient to destroy boxy orbits and impart high global
rotation (Barnes 1996; Barnes & Hernquist 1996). Furthermore, boxy galaxies
tend to have flat inner profiles (Faber et al. 1997). N-body simulations
of merging galaxies with central black holes (Ebisuzaki et al. 1991; Makino 1997; Quinlan & Hernquist 1997; Milosavljevic & Merritt 2001)
show that cores can indeed form in such merger remnants. Recently, Lauer et al. (2005) have found that power-law galaxies, on average, have steeper
colour gradients than do core galaxies (although the difference is small). This
result is compatible with the idea that power-law galaxies have formed in
gas-rich mergers while core galaxies have formed from free-gas mergers, which
would cause a dilution in the metallicity gradient. Actually, these mergers
without gas have been observed in clusters at z=0.8 (van Dokkum et al.
1999). The existence of these gas-free mergers indicates that the epoch of
assembly does not necessarily coincide with the epoch of formation of the bulk
of stars. This scenario could bring the hierarchical models of
galaxy formation into agreement with the observed trends of age with mass for elliptical
galaxies in LDEGs. These trends (low-
galaxies appearing to be younger)
are completely opposite to what is expected under these scenarios of galaxy
formation, which predict that larger galaxies assemble at later times than small
ones (Kauffman et al. 1993). However, these predictions are made under the
assumption that all the gas cooled off and formed stars when the haloes were
assembled. However, other processes, such as supernova feedback, may play a
role in regulating the rate at which stars form in these systems (e.g., Kawata
& Gibson 2003). Several mechanisms have been proposed to explain the
appearance that low-mass galaxies have suffered a more extended star formation
history. Kawata (2001) suggests that UV background radiation is a possible
candidate because it suppresses cooling and star formation more strongly in
lower mass systems (Efstathiou 1992), and is expected to extend the duration of
star formation. Chiosi & Carraro (2002) have recently built N-body-tree-SPH
simulations incorporating cooling, star formation, energy feedback, and chemical
evolution. These authors find that the star formation history is governed by
the initial density and total mass of the galaxy, and that the interplay of the
above processes results in a more extended star formation history in low-mass
galaxies. Until we understand the role of these mechanisms
completely, we
will not be able to rule out different processes of galaxy formation.
We have studied the stellar population properties of the centres of 98 early-type galaxies spanning a large range in velocity dispersion. Using the new stellar population synthesis models of V06, which include a new and improved stellar library (MILES), we have derived ages and metallicities for this sample of galaxies. Due to the difficulties in deriving chemical abundances with the available tools, we have studied the behaviours of the different chemical elements in a very qualitative way, measuring the metallicity with different indices especially sensitive to different chemical species. From this analysis, we conclude:
It is worth recalling that the results discussed in Papers I and II of this series refer only to the central regions of the galaxies. If significant radial age and metallicity gradients are present within the galaxies, these results cannot be considered representative of the whole star formation history. That is, to constrain the star formation history of early-type galaxies, we cannot ignore the behaviour of the SSP-parameters along the radii. This analysis is beyond the scope of the present paper, but will be the subject of the third paper of the series.
Acknowledgements
We are very grateful to the referee, Jim Rose, for his very constructive report and many useful suggestions. We are also grateful to Javier Cenarro, Brad Gibson, Reynier Peletier, Daisuke Kawata, and Alexandre Vazdekis for many fruitful discussions. The Calar Alto Observatory is operated jointly by the Max-Planck Insitute für Astronomie, Heidelberg, and the Spanish Instituto de Astrofísica de Andalucía (CSIC). This work was supported by the Spanish research project AYA 2003-01840 and by the Australian Research Council. We are grateful to the CAT for generous allocation of telescope time.
Table 1: Central ages and metallicities obtained in different index-index diagrams. The associated errors are indicated under the measurements. See Sect. 2 for more details.