Table 2: Characteristic frequencies of the expected spectral energy distributions.
LS 5039 Periastron $d_{\rm s}=0.1$ AU Apastron $d_{\rm s}=0.2$ AU
  $2 \times 10^{11}$ cm 100 keV 0.4 TeV $4\times 10^{11}$ cm 200 keV 0.4 TeV
LS I+61 $\hbox {$^\circ $ }$303 Periastron $d_{\rm s}=0.1$ AU Apastron $d_{\rm s}=0.7$ AU

polar
$8\times 10^{11}$ cm 100 keV 0.8 TeV $4\times 10^{12}$ cm 15 keV 0.5 TeV
equatorial $5\times 10^{10}$ cm 6 keV 0.05 TeV $2\times 10^{12}$ cm 5 keV 0.3 TeV
PSR B1259-63 Periastron $d_{\rm s}=0.7$ AU Apastron $d_{\rm s}=10$ AU

polar
$3\times 10^{12}$ cm 12 keV 0.5 TeV $4\times 10^{13}$ cm 1 keV 0.5 TeV
equatorial 1012 cm 4 keV 0.2 TeV not applicable
The standoff distance (first number) is calculated at periastron and apastron using Eq. (3) and the stellar wind parameters in Sect. 6. Both a polar and an equatorial wind are considered for the Be stars. The break frequencies in the synchrotron and Compton spectra are then calculated using Eqs. (19) and (22) in Sect. 4.1. The pulsar wind parameters are the same for all the objects: $\dot{E}=10^{36}$ erg s-1, $\sigma =0.01$, and $\gamma_{\rm p}=10^5$. The star temperatures are such that inverse Compton interactions are in the Klein-Nishina regime.

Source LaTeX | All tables | In the text