A&A 454, 437-445 (2006)
DOI: 10.1051/0004-6361:20054745
P. Salomé1 - F. Combes2 - A. C. Edge3 - C. Crawford4 - M. Erlund4 - A. C. Fabian4 - N. A. Hatch4 - R. M. Johnstone4 - J. S. Sanders4 - R. J. Wilman3
1 - Institut de Radioastronomie Millimétrique, 300 rue de la Piscine, 38406 St. Martin d'Hères, France
2 - Observatoire de Paris, LERMA, 61 Av. de l'Observatoire, 75014 Paris, France
3 - Department of Physics, University of Durham, South Road, Durham DH1 3LE, UK
4 - Institute of Astronomy, Madingley Road, Cambridge CB3 OHA, UK
Received 21 December 2005 / Accepted 15 February 2006
Abstract
Cold molecular gas has recently been detected in several
cooling flow clusters of galaxies containing huge optical nebula.
These optical filaments are tightly linked to cooling flows and
related phenomena, such as rising bubbles of relativistic plasma
fed by radio jets. We present here a map, in the CO(2-1)
rotational line, of the cold molecular gas associated with some
of the H
filaments surrounding the central galaxy of the
Perseus cluster: NGC 1275. The map, extending to about 50 kpc
(135 arcsec) from the center of the galaxy, has been made with
the 18-receiver array HERA at the focus of the IRAM 30 m
telescope. Although most of the cold gas is concentrated to the
center of the galaxy, the CO emission is also clearly associated
with the extended filaments conspicuous in ionised gas, and could
trace a possible reservoir fueling the star formation there.
Some of the CO emission is also found where the X-ray gas could
cool down more efficiently at the rims of the central X-ray
cavities (where the hot gas is thought to have been pushed out
and compressed by the expanding radio lobes of the central AGN).
The CO global kinematics do not show any rotation in NGC 1275.
The cold gas is probably a mixture of gas falling down on the
central galaxy and of uplifted gas dragged out by a rising bubble
in the intracluster medium. As recently suggested in other
cluster cores, the cold gas peculiar morphology and kinematics
argue for the picture of an intermittent cooling flow scenario
where the central AGN plays an important role.
Key words: galaxies: cooling flows - intergalactic medium - galaxies: clusters: individual: NGC 1275 - galaxies: elliptical and lenticular, cD
Our view on cooling flows at the core of galaxy clusters has changed considerably in recent years due to X-ray observations with Chandra and XMM-Newton (Fabian et al. 2003). This generation of X-ray satellites have found no evidence for gas below one third of the virial temperature (Peterson et al. 2003; Allen et al. 2001) and they suggested the necessity of some re-heating mechanism (Peterson et al. 2003).
At the same time, CO emission lines have been detected in several cooling flows at millimetre wavelengths, with the IRAM 30 m telescope, the James Clerk Maxwell Telescope (JCMT) and the Caltech Submillimeter Observatory (CSO) (Salomé & Combes 2003; Edge 2001). For the first time, the presence of very cold molecular gas within these environments has been revealed. The Owens Valley Radio Observatory (OVRO) and the Plateau de Bure (PdB) interferometers have even produced the first maps of the molecular emission and confirmed the peculiar morphology and dynamics of the cold component (Salomé & Combes 2004b,a; Edge & Frayer 2003). The gas masses derived from these CO observations are also consistent with the cold residual gas expected to cool out of the X-ray band (from Chandra and XMM-Newton mass deposition rates), making it possible that the long searched for cool gas has indeed been detected.
The giant cD galaxy NGC 1275 lies in the center of the Perseus cluster (Abell 426), the X-ray brightest cluster of galaxies in the sky. This galaxy is at a redshift of 0.01756. At this distance, 1'' is 370 pc, with H0 = 70 km s-1 Mpc-1. The gas in the core of this cluster will cool if there is no balancing heat source, due to the short cooling time of the intracluster medium (ICM) inside a few tens of kpc (Fabian et al. 2003).
The Perseus cluster (first detected in mm by Mirabel et al. 1989) remained
the only cooling flow cluster core mapped in CO for approximately 10 years. During this time the origin of the molecular emission was
probed by various maps that were limited in both size and sensitivity.
Reuter et al. (1993) imaged the millimetric emission of the central
cluster region in CO(1-0) and CO(2-1) emission lines with the IRAM 30 m
telescope and built the first map of the central 50''.
Braine et al. (1995) then observed the Perseus cluster in CO(1-0) with the
IRAM Plateau de Bure interferometer (PdBI). Emission was detected
around the nucleus but the continuum source made the map very noisy at
the center. The authors suggested that the molecular gas could come
from a source other than a cooling flow, such as a recent merger
event. More recently, Inoue et al. (1996a) observed the cluster center
with the Nobeyama Millimeter Array in CO(1-0) using a primary beam of 65'' in diameter. Two peaks were identified within the inner 3 kpc
(8 arcsec), which may be parts of a ring-like orbiting gas structure
around the nucleus that could trace the AGN fueling by the cD galaxy.
Finally, the most recent millimetric map of the central 1' region
has been made by Bridges & Irwin (1998) with the JCMT in CO(2-1) and
CO(3-2) emission lines in single dish mode. Detections out to 36''have been claimed, with a spatial resolution of 21''.
Large optical nebulae are often observed within cooling flow clusters
of galaxies (Crawford et al. 1999), and not detected surround galaxies in
clusters where the radiative cooling time is larger than the age of
the cluster. The Perseus cluster harbors a huge H
filamentary
nebula (McNamara et al. 1996a; Conselice et al. 2001; Hu et al. 1983). The origins of the optical
filaments and their ionization source are not identified yet. However
they do trace, in some part, the radiative cooling of the hot
intracluster medium either directly or indirectly. Fabian et al. (2003)
compared the X-ray structures with the optical emission and proposed
that the H
filaments could be ionized cold gas that has been
drawn up behind a rising bubbles of relativistic plasma, a picture
that takes into account the role of a central radio source in cooling
flows (see also Boehringer et al. 1993).
The strong H
emission in cooling flows also traces the
presence of cold molecular gas. There is a strong correlation between
H
and CO, at
10-100 K (Salomé & Combes 2003; Edge 2001), which is
reinforced by a clear association, both in terms of morphology and
dynamics. This is revealed in the IRAM PdBI CO(1-0) and CO(2-1) maps
of Abell 1795. H
also correlates with the presence of warm
H2, at
1000-2000 K (Wilman et al. 2002; Edge et al. 2002). Recent United
Kingdom Infra-Red Telescope (UKIRT) observations (Hatch et al. 2005a) have
shown a direct association between this H2 emission and the outer
optical filaments in NGC 1275. Based on near-IR Integral Field Unit
(IFU) observations of the warm H2, Wilman et al. (2005) found a 50 pc
radius ring in the central part of the galaxy.
To probe the link between the molecular gas and the optical filaments within cooling flows, we made a large map of the central region of NGC 1275 in CO(2-1) emission. The next section presents the observational procedure and the data reduction. In Sects. 3 and 4, the molecular gas emission detected with HERA on the 30 m telescope is presented. The implication of this new view of the Perseus cluster core through millimetric wavelength is then discussed in Sect. 5, before concluding in Sect. 6.
The observations were made from 1st to 3rd January 2005 at the
IRAM-30 m telescope. We used the HEterodyne Receiver Array HERA
(Schuster et al. 2004), a focal array of 18 SIS receivers, 9 for each
polarization, tuned to the CO(2-1) line for NGC 1275 (226.56 GHz).
The 9 pixels are arranged in the form of a center-filled square and
are separated by 24''. The sampling was 6 arcsec (full sampling),
and a homogeneous mapping procedure was used to regularly sweep a
pixel map, filling the intrinsic square of
.
Four such
maps were created, covering the central
,
with a 5th one
covering
over the northern vertical H
filament,
centered at (0, 108). In total the map includes 720 points. The
parameters for NGC 1275 are summarized in Table 1.
At 226 GHz, the telescope half-power beam width is 12''. The
main-beam efficiency is
.
The typical system temperature varied between 250 and 650 K (on the
scale). Wobbler switching mode was used, with reference
positions offset by 4' in azimuth. The pointing was regularly
checked on NGC 1275 itself (3C 84 continuum source) and the accuracy
was 3'' rms. The WILMA backend was used, providing a band 1 GHz
wide for each of the 18 detectors. The bands contain 512 spectral
channels spaced by 2 MHz. The total bandwidth corresponds to
1300 km s-1 at the CO(2-1) line (with velocity resolution of 2.6 km s-1).
The data were reduced with the GILDAS software. Mis-functioning pixels were completely rejected (3 out of 18). Some spectra with random highly non-linear baselines were suppressed. Linear baselines were subtracted from all other spectra, but the continuum at the center was impossible to detect because of its varying level (likely due to to varying atmosphere). The final spectra were smoothed by 30 km s-1.
Source | RA | Dec |
![]() |
Frequency* |
(J2000.0) | (J2000.0) | (km s-1) | GHz | |
NGC 1275 | 03:19:48.16 | +41:30:42.1 | +5264 | 226.560 |
* Tuning frequency at CO(2-1).
The major part of the CO emission comes from the central region. Some
of the 720 spectra (the central ones) are displayed in Fig. 1. The center of Perseus is clearly detected, and corresponds
to the maximum of CO(2-1) emission. There is an offset with respect to
the AGN center. The bulk of the molecular gas is shifted toward the
West by 3 kpc (8 arcsec). In addition, there is a clear
detection of CO gas associated with the H
emission towards
the East and the West of the optical galaxy. Its total extent is
around 30 kpc (80 arcsec). No emission was detected in the Eastern
region in CO(1-0) by Inoue et al. (1996b), probably because the emission
was resolved out by their interferometer with its primary beam of
1 arcmin. The total integrated emission is plotted in Fig. 2.
![]() |
Figure 2:
Left side: integrated emission in CO(2-1) over the whole map.
The region covered by the HERA observations is a central
![]() ![]() ![]() ![]() ![]() ![]() |
![]() |
Figure 3:
Left side: positions of selected CO(2-1) spectra (in black)
together with the H![]() ![]() |
The cold molecular gas is also detected around all of the central
30 kpc (80 arcsec). The emission is fainter than in the centre, and
follows the filamentary H
emission. We have extracted 115
spectra with
,
being particularly careful of broad
emission lines (width
300 km s-1). Figure 3 shows the
positions of CO(2-1) selected spectra compared to the regions where
Conselice et al. (2001) extracted the spectra of the ionized gas. A
summary of the CO emission line parameters is given in Tables 3 and
in the Appendix. The cold gas is still
detectable between 20 and 50 kpc (50-120 arcsec) from the central
galaxy, where the cooling time of the X-ray ICM is still low
(2-
yr Sanders et al. 2004).
We computed the total molecular gas mass, deduced from the integrated
CO emission, using simple assumptions about its excitation and
metallicity. We assumed that the antenna temperature in CO(2-1) is on
average 0.7 times that in the CO(1-0) line, over the whole surface of
the emission. In the center, the CO(2-1)/CO(1-0) ratio is equal to 1,
decreasing down to 0.5 towards the outer parts, according to
Reuter et al. (1993). Bridges & Irwin (1998) measured an average ratio of 0.74. Then we adopt the standard CO to H2 conversion ratio, which
should apply to solar metallicity gas, of
cm-2 (Solomon et al. 1997).
We evaluated the total mass by adding the contribution of all the
different regions listed in Table 3
(Appendix), taking into account overlapping beams. The total mass
found is
10
,
a large amount for a single
galaxy. This is only a lower limit as the gas cooling from the ICM
should have low metallicity. We have plotted, in Fig. 4,
the local and accumulated molecular gas mass versus radius. The
present results are compatible with that from Reuter et al. (1993) and
Bridges & Irwin (1998), who found a molecular gas mass close to the
accumulated mass deduced here for a comparable radius. We find a
large mass of gas, which is very spatially extended, showing that
there is a lot of cold gas accompanying the filaments. The older
measurements of Lazareff et al. (1989) and Mirabel et al. (1989) are slightly below the
mass value we find with HERA.
The amount of cold gas in the core of the Perseus cluster is in
agreement with the quantity of residual cooled gas expected from
recent cooling rates of the intra-cluster medium. Bregman et al. (2005)
deduced a mass deposition rate of 50 /yr from OVI emission,
detected with FUSE from the
11 kpc (30 arcsec) central region.
X-ray data lead to
20
/yr (Fabian et al. 2005) from the same
region. So the molecular gas detected here could have been
accumulated in
yr, which is 3-4 cooling times
in that region.
The kinematics deduced from the CO spectra are not regular. Relative to the systemic velocity, there are negative velocities on both sides (West and East) of the major axis of the emission, with positive velocities in the center (see the isovelocity curves in Fig. 5).
The average of all of the selected spectra, plotted in Fig. 6, shows that the total emission cannot be fitted properly by a single Gaussian. A two component model gives better results.
![]() |
Figure 6:
Average of the selected spectra plotted in Fig. 3 (![]() |
We computed the CO velocity as a function of radius (Fig. 7).
Each position in this diagram has been identified by a number which is
referenced in Tables 3 and . The velocity of the
H
gas, computed by Conselice et al. (2001), has been added in
red, covering the central 13 kpc (35 arcsec) region with a large
scatter.
A comparison with a typical rotation curve expected for a spherical mass model for a galaxy like NGC 1275 shows that there is no clear sign of a rotating pattern of the CO gas. Our observations show that the CO gas does not follow a rotational pattern, as was hinted at by previous observations (Reuter et al. 1993). The points are distributed over all the bound region. The cold gas that lies between 18.5 and 37 kpc (50-100 arcsec) is detected at a velocity of approximately 200 km s-1 in the cD galaxy rest frame. If the CO is forming from a cooling flow, we expect the gas to cool down in the cluster rest frame before being accreted by the cD galaxy. The cluster redshift is 0.0183, which represents +220 km s-1 in the cD rest frame. In Fig. 7, we have separated the points at a radius below 13 kpc (35 arcsec) from the points at a radius above this arbitrary limit, by horizontal dashed line. In the filament, the CO clouds velocities are between the cluster and the central cD velocities. However, it is not possible to discern any clear velocity gradient here.
Two different trends can be identified. Close to the centre (within 35'') there is an offset of -150 km s-1 between the redshift of
the optical galaxy and the CO rest frame. This offset might be an
indication that the gas being accreted into the potential well of the
central galaxy is not yet completely relaxed. Figure 7
compares the CO(2-1) and H
kinematics. The velocities of the
CO line are between 0 km s-1 and -100 km s-1, whilst the H
velocities are spread over
250 km s-1. Nevertheless most of the
H
regions detected close the CO regions also have negative
velocities.
At larger radii, the CO velocities have a larger scatter, but on
average are positive. This component at large radii, which is
associated with the long laminar H
filaments may trace gas
cooling out of the hot ICM that surrounds the cD galaxy. Such a
reservoir of cold gas in the filaments could fuel star formation at
large distances from the central galaxy, helping to photoionize the
surrounding gas.
This scenario is reinforced by the velocity dispersion measured from
each of the lines. Figure 8 shows the CO(2-1) line widths
versus radius. The data inside 13 kpc (35 arcsec) have a mean velocity
dispersion of around 250 km s-1, whilst in the outer region this
value drops to
125 km s-1 which is still quite a large value.
Some of these points have an extremely high velocity dispersion. These
emitters could belong to cooling filaments expected to be dynamically
perturbed and kinematically dissociated from the central cD. However,
the high velocity dispersion values could also be due to the large
spread of data points where the emission is fainter (in particular the
outer regions).
The geometry of the source and the dynamical interaction between the
ICM and the central radio lobes makes a detailed interpretation
difficult. It is possible, as suggested by Fabian et al. (2001), that part
of the X-ray/H
emission traces cooled uplifted gas, dragged
behind the expanding radio lobes. An X-ray excess is also found at the
edges of the radio lobes. It is likely that some of the CO formed in
these cooler regions in the form of dense clumpy clouds. The gas
probably originates from a mixture of different cooling processes
occurring in a complex cooling flow scenario where the AGN plays a
important role. The AGN re-heats the ICM, as well as causing enhanced
cooling along the radio edges, and forms bubbles of relativistic
plasma which drag cooler gas from the central regions (e.g.
Crawford et al. 2005b; Crawford et al. 2005a).
North, 30 kpc (80 arcsec), NGC 1275 harbors a long, thin
optical filament extending radially North-South. Hatch et al. (2005b)
determined the kinematics of the H
and [N II] emission
lines along this filament. The molecular gas that is detected in the
same region is found to share the same velocity structure (positions 105, 106, 102, 104, 103). H
spectroscopy by Hatch et al. (2005b)
revealed that the Northern and the Southern regions of the filament
can be separated into two parts flowing in opposite directions. The
authors suggest this implies the gas is not only falling on the
central galaxy, but also flowing away along the filament. Therefore
there must be a mechanism that is able to draw the gas away from the
central cD. Whether the ICM gas moves outward before it cools down to
very low temperatures (10-100 K) is still an open question. However,
small dense clouds of molecular gas are very likely to be detected
where they have formed if they are not perturbed by any external
gravitational force. Whilst the central and eastern regions appear to
be gas condensing and accumulating; however, it is not clear whether
the extended regions represent an inflow or an outflow of cool gas.
In the scenario where the radio emitting plasma from the central AGN
forms buoyant bubbles rising into the ICM dragging cool gas with them,
could the cold material also be dragged out, reducing the amount of
mass accumulating onto the central galaxy? Comparison of H
and CO kinematics along the so-called Horseshoe (a filament extended
Northwest of NGC 1275) does not give a clear answer. Hatch et al. (2005b)
showed that the optical filament is most likely to be flowing out
behind a rising bubble, the CO spectra are not sensitive enough to
show whether or not they follow this dynamical model (positions 4, 10,
11 agree whilst positions 5, 7, 8 present some discrepancies). The
molecular gas emission is very faint in these regions and it is hard
to conclude anything from the present work. Deeper observations of
these regions in the millimeter are required to accurately compare the
optical and millimeter gas dynamics in the filaments.
The CO(2-1) observations allow us to probe the origin of the molecular gas in NGC 1275. The chaotic kinematics are not compatible with a rotating disk, but supports the view of a system far from equilibrium. This may be due to either a recent merger, or gas accumulating from the cooling flow that has been agitated by the radio-jets. The presence of young stellar clusters in the center of NGC 1275 may be a consequence of such gas accumulation.
High resolution HST images reveal active star forming regions in the
center of NGC 1275 (Carlson et al. 1998; Holtzman et al. 1992). The interpretation of
the formation of these young globular clusters is debated. They may
have formed during a recent merger. Alternatively, the stars may have
formed out of the cooling X-ray gas, which is believed to be an
intermittent phenomenon, and may be able to produce a burst of star formation.
There are stellar clusters associated with the high velocity
(8200 km s-1) system which is observed in absorption in the optical and
X-ray emission. There are also stellar clusters detected as far as
22 kpc (60 arcsec) from the cD galaxy center (Conselice et al. 2001). However,
these outer stellar clusters are not preferentially associated with
the H
filaments, nor with the CO emission.
The merger hypothesis was proposed after early optical spectroscopy
revealed two systems along the line of sight to NGC 1275
(Rubin et al. 1977): a smooth luminosity profile, early-type system, i.e.
NGC 1275 itself, at
V=5200 km s-1, and superposed in front, a dusty
late-type system, that obscures the low velocity system to the North.
The second system emits high-ionisation line emission at a higher
velocity of V=8200 km s-1, but no continuum or absorption lines are
detected. The system generally extends to the Northwest.
The detection of a broad absorption feature in HI (van Gorkom & Ekers 1983)
without any accompanying emission does not support the hypothesis that
this is a late-type system. Although the fact that no stellar
component is detected may be due to obscuration, by the edge-on
orientation of the disk. However, near-infrared
(JHK) maps from 2MASS
detect no foreground galaxy (Jarrett et al. 2003).
![]() |
Figure 8:
CO(2-1) line width radial distribution. Plotted in blue is
the escape velocity computed from the mass distribution shown in
Fig. 7. Plotted in red is
![]() ![]() ![]() ![]() ![]() |
In their optical study, Rubin et al. (1977) and later Unger et al. (1990) found that emission from the Northwest extension is detected at both velocities (5200 and 8200 km s-1), which supports the view that an interaction between the two systems is taking place. Moreover, gas at intermediate velocities has also been observed by Ferruit et al. (1997). It is interesting to note that the CO(1-0) map by Inoue et al. (1996b) found a Northwest extension in molecular gas that corresponds with the optical extension, at the low-velocity of 5200 km s-1. The high-velocity gas may be debris from tidal or ram pressure stripping that may interact with the gas accumulated by the cooling intracluster medium Hu et al. (1983). However, X-ray absorption data shows that the high velocity system is at least at 60 kpc in front of NGC 1275 and therefore cannot be interacting Gillmon et al. (2004).
The eastern part of NGC 1275 appears free from the high-velocity
system and so the interpretation is easier. The H
filaments
surround NGC 1275 and appear tightly correlated with the X-ray
bubbles (Fabian et al. 2003). The fact that the CO(2-1) emission is clearly
associated with the H
filaments supports the hypothesis that
the cold molecular gas radiatively cools out of the intracluster
medium and that both gas components share the same excitation source.
Figure 10 compares the CO intensity (Ico in K km s-1) and the
H
flux (erg s-1 cm-2) radial distributions. We have
normalized both emission lines by their respective maximum. The Ico
decreases steeply with radius. We have superposed a curve proportional
to r-2 to mimic a central excitation source without any further
losses due to attenuation. It is not clear whether we can rule out
such a source of energy, since the data points are highly scattered.
Conselice et al. (2001) excluded the AGN as the main ionization
source. Therefore extra emission associated with star formation (for
example shocks or UV radiation from young stars) in the filaments may
be involved.
We compared the molecular gas mass to the H
luminosity for the
individual regions for which both lines were detected
(Fig. 9). We included the measurements obtained by
Edge (2001) in this plot and Salomé & Combes (2003) for the ensemble of CO
detected cooling flow clusters. The straight line over-plotted is the
linear relation fitted by Salomé & Combes (2003), and suggested by
Edge (2001). Although NGC 1275 itself lies below the line in the
Edge (2001) version of this plot, the individual regions follow the
linear relation.
![]() |
Figure 9:
Cold molecular gas mass as a function of H![]() |
![]() |
Figure 10:
Normalized CO(2-1) intensity (Ico in K km s-1) of selected
spectra vs. radius together with normalized H![]() ![]() |
The CO contours appear to surround the Northern X-ray cavity which
coincides with the Northern radio lobe (Fig. 11). The
hot gas, which is compressed towards the rims by the radio emitting
plasma, cools more efficiently. This may explain the presence of CO
gas in this region. This is similar to the results using the IRAM
plateau de Bure interferometer, for the cooling flow cluster Abell 1795 (Salomé & Combes 2004a). In
Abell 1795 the H
is enhanced, and CO
is detected along the edges of the radio lobes. The alignment of
H
emission and detection of CO occurs around only one of the
lobes in both NGC 1275 and Abell 1795. Active star formation is also
identified in these regions. The observations presented here agree
with the results from Abell 1795: the radio lobe expansion (which may
re-heat the intracluster medium at large radii) can increase the
radiative cooling and accelerate the formation of cold molecular
clouds along the edges of the radio lobes. These cold clouds may then
be accreted onto the central galaxy, or form stars along the edges of
the radio lobes. A more accurate estimate of the amount of gas
available for star formation compared to the amount of gas that may
accrete on the cD galaxy is crucial to constrain the intermittent
cooling flow scenario. We notice that along the edge of the Southern
radio lobe, no molecular gas nor H
emission is detected, and
there is no evidence of star formation. This reinforces the key role
that the molecular gas plays as a fuel for star formation.
![]() |
Figure 11: Contours of the CO(2-1) emission (black) superimposed on the X-ray image (false colours, indicating intensity) by Fabian et al. (2003), and with the radio contours (white) by Pedlar et al. (1990). The relativistic plasma ejected by the central AGN in the two radio lobes pushes out the X-ray gas, which is compressed on the rims, and cools down there. The CO is also found at the border of the northern cavity. |
There is a clear filamentary and clumpy extension of the CO emission to the East (positions 70, 71, 72, 77, 78, 79, 82, 85), in the same region that Hatch et al. (2005a) found H2 ro-vibrational lines. This region corresponds to the position of a star cluster identified by Shields & Filippenko (1990). The warm H2 from the stellar cluster region is predominantly excited by stellar light. However, the warm molecular hydrogen detected in the outer filaments is not excited by stellar UV. Since excitation by the central AGN is insufficient, the most likely interpretation is a combination of cooling gas, thermal excitation, possibly by shocks or conduction from the intracluster medium, and an additional contribution from non-thermal excitation from stellar UV or X-rays (Hatch et al. 2005a). The cold molecular gas may be fuelling the star formation in this region. Table 2 presents the parameters of the CO emission lines fitted in the Shields and Filippenko star cluster region (see Fig. 12). Based on the Hatch et al. (2005a) results, we looked for two velocity components in the molecular gas lines from this region. We fitted a two component model and found a broad and narrow line Gaussian, in agreement with Hatch et al. (2005a) (line 2 and line 1 respectively in Table 2). The narrow line could be tracing the reservoir of molecular gas associated with the star forming region, while the broad line may be the underlying filament emission.
Shields & Filippenko (1990) found a total cluster mass of
(assuming that the light is dominated by O-type stars) and reached an
upper limit of
with a steeper IMF. This is small
compared to the
of molecular gas found
in that region, even with a very low star formation efficiency.
McNamara et al. (1996b) used optical observations to deduce a star formation
rate inside the central 15 kpc (40 arcsec) of approximately 40
/yr over
yr. This star formation rate is
similar to the X-ray derived mass deposition rate in the same region
(20-50
/yr). So the radiative cooling of the hot
intracluster medium may create a reservoir of cold gas. If the star
formation rate is slightly smaller than the mass deposition rate
(
5
/yr), then it is possible to accumulate a total mass
of 2-
in 10 Gyr (as deduced from the
present CO observations in the same region). It is also possible that
the cooling intracluster medium only causes intermittent star
formation events while the radiative cooling of the intracluster
medium is continuous.
Position | Area 1 | Area 2 | Area2 / (Area1+Area2) |
("![]() |
(K km s-1) | (K km s-1) | |
(21, 9) | 2.14 ![]() |
1.76 ![]() |
0.45 |
(21, 15) | 0.88 ![]() |
2.14 ![]() |
0.7 |
(21, 21) | 1.33 ![]() |
1.05 ![]() |
0.44 |
(27, 9) | 1.58 ![]() |
1.3 ![]() |
0.45 |
(27, 15) | 1.46 ![]() |
1.21 ![]() |
0.45 |
(27, 21) | 0.54 ![]() |
1.33 ![]() |
0.7 |
(33, 15) | 1.84 ![]() |
0.66 ![]() |
0.26 |
(39, 9) | 1.13 ![]() |
1.02 ![]() |
0.47 |
All | 1.4 ![]() |
1.3 ![]() |
0.48 |
The extended CO(2-1) map created with the HERA array at the IRAM-30 m
reveals cold molecular gas sharing the same morphology as the
H
emitting gas as detected by Conselice et al. (2001). In particular
both gas components share an East-West extension. In addition strong
H2 emission is detected in the Eastern filaments (Hatch et al. 2005a).
The CO contours surround the Northern X-ray cavity formed by the
ejection of relativistic plasma from the central AGN into the
intracluster medium. The CO kinematics do not show any rotational
structure. The picture emerging from these observations is consistent
with the interpretation that the hot intracluster gas has been pushed
and compressed by the expanding radio lobes. Along the edges of the
lobes, the gas is denser, therefore it cools more efficiently and can
cool quickly to low temperatures. Molecular gas may form in these
regions and be detected as CO emission surrounding the radio lobes.
This molecular gas may fuel star formation which in turn can provide
some of the photons that ionise the H
emitting gas.
Acknowledgements
Based on observations carried out with the IRAM 30 m telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain). The authors also would like to acknowledge in particular the IRAM staff for help provided during the observations.
Number | Position | Peak | S/N | Area | Center | Width |
![]() |
F(H![]() |
("![]() |
(mK) | (K km s-1) | (km s-1) | (km s-1) | (108 ![]() |
1015 erg s-1 cm-2 | ||
1 | (-70, -9) | 2.4 ![]() |
5.9 | 0.9 ![]() |
-78.0 ![]() |
374.0 ![]() |
1.8 | 7.2 |
2 | (-70, 15) | 10.5 ![]() |
7.5 | 4.7 ![]() |
-88.1 ![]() |
422.1 ![]() |
8.7 | |
3 | (-70, 21) | 5.1 ![]() |
4.7 | 0.2 ![]() |
245.6 ![]() |
52.9 ![]() |
0.5 | 6.6 |
4 | (-70, 45) | 4.1 ![]() |
9.1 | 0.8 ![]() |
209.2 ![]() |
201.3 ![]() |
1.6 | |
5 | (-70, 51) | 8.1 ![]() |
4.4 | 0.8 ![]() |
-367.0 ![]() |
94.5 ![]() |
1.5 | |
6 | (-63, -58) | 7.1 ![]() |
4.3 | 0.4 ![]() |
-357.3 ![]() |
52.9 ![]() |
0.7 | |
7 | (-63, 57) | 6.5 ![]() |
6.9 | 0.4 ![]() |
-335.4 ![]() |
65.6 ![]() |
0.8 | 3.7 |
8 | (-58, 69) | 9.5 ![]() |
10.0 | 0.7 ![]() |
402.5 ![]() |
72.3 ![]() |
1.3 | |
9 | (-52, -70) | 6.6 ![]() |
5.8 | 1.4 ![]() |
35.7 ![]() |
201.1 ![]() |
2.6 | |
10 | (-52, 57) | 4.1 ![]() |
5.0 | 0.6 ![]() |
87.4 ![]() |
154.6 ![]() |
1.2 | 2.8 |
11 | (-52, 63) | 5.9 ![]() |
6.5 | 0.3 ![]() |
358.6 ![]() |
52.9 ![]() |
0.6 | |
12 | (-39, -52) | 6.1 ![]() |
6.2 | 0.8 ![]() |
347.4 ![]() |
123.9 ![]() |
1.5 | |
13 | (-39, -16) | 4.1 ![]() |
4.0 | 1.5 ![]() |
47.9 ![]() |
349.1 ![]() |
2.8 | |
14 | (-39, 9) | 7.4 ![]() |
7.2 | 1.9 ![]() |
52.7 ![]() |
248.3 ![]() |
3.6 | |
15 | (-33, -33) | 7 ![]() |
4.3 | 0.7 ![]() |
324.0 ![]() |
105.4 ![]() |
1.4 | |
16 | (-33, 9) | 10.3 ![]() |
7.5 | 3.7 ![]() |
-20.0 ![]() |
343.9 ![]() |
7.0 | |
17 | (-28, -9) | 5.5 ![]() |
5.4 | 2.9 ![]() |
49.1 ![]() |
498.4 ![]() |
5.4 | |
18 | (-28, 3) | 11.9 ![]() |
8.7 | 3.5 ![]() |
-33.3 ![]() |
276.9 ![]() |
6.5 | |
19 | (-28, 9) | 15.3 ![]() |
10.7 | 3.6 ![]() |
-50.9 ![]() |
225.9 ![]() |
6.8 | |
20 | (-28, 15) | 12.8 ![]() |
13.8 | 2.4 ![]() |
-33.8 ![]() |
179.3 ![]() |
4.5 | |
21 | (-28, 21) | 9.9 ![]() |
16.1 | 1.9 ![]() |
20.6 ![]() |
183.1 ![]() |
3.5 | 17.8 |
22 | (-28, 33) | 7.9 ![]() |
8.8 | 1.0 ![]() |
42 ![]() |
126.8 ![]() |
2 | |
23 | (-28, 39) | 3.6 ![]() |
4.3 | 1.6 ![]() |
-138.4 ![]() |
421.4 ![]() |
3.0 | 6.9 |
24 | (-28, 51) | 4.1 ![]() |
5.0 | 0.5 ![]() |
104.1 ![]() |
123.2 ![]() |
1.0 | |
25 | (-28, 63) | 3.5 ![]() |
4.0 | 0.6 ![]() |
-103.5 ![]() |
162.6 ![]() |
1.1 | |
26 | (-22, -70) | 7.8 ![]() |
4.9 | 1.5 ![]() |
-200.2 ![]() |
188.6 ![]() |
2.94 | 8.4 |
27 | (-22, -63) | 3.3 ![]() |
6.9 | 0.7 ![]() |
292.4 ![]() |
201.2 ![]() |
1.3 | 21.2 |
28 | (-22, -4) | 14.5 ![]() |
4.3 | 2.4 ![]() |
-107.3 ![]() |
156.9 ![]() |
4.5 | |
29 | (-22, 3) | 19.4![]() |
6.6 | 5.0 ![]() |
-74.7 ![]() |
245.9 ![]() |
9.4 | |
30 | (-22, 9) | 15.4 ![]() |
9.1 | 3.0 ![]() |
-43.1 ![]() |
186.4 ![]() |
5.6 | |
31 | (-22, 15) | 12.4 ![]() |
12.3 | 2.7 ![]() |
-87.4 ![]() |
210.6 ![]() |
5.2 | |
32 | (-22, 21) | 6.3 ![]() |
8.0 | 1.7 ![]() |
-31.8 ![]() |
258.4 ![]() |
3.2 | 17.8 |
33 | (-22, 33) | 7.1 ![]() |
6.5 | 1.1 ![]() |
154.9 ![]() |
153.5 ![]() |
2.1 | |
34 | (-16, -46) | 8.9 ![]() |
6.0 | 1.3 ![]() |
346.3 ![]() |
142.8 ![]() |
2.5 | |
35 | (-16, -22) | 7.2 ![]() |
5.4 | 0.9 ![]() |
-56.9 ![]() |
128.1 ![]() |
1.8 | 13.2 |
36 | (-16, -16) | 6.3 ![]() |
5.6 | 1.5 ![]() |
-51.0 ![]() |
232.3 ![]() |
2.9 | |
37 | (-16, -9) | 8.0 ![]() |
4.7 | 1.7 ![]() |
-46.5 ![]() |
200.1 ![]() |
3.1 | |
38 | (-16, -4) | 23.9 ![]() |
17.7 | 6.1 ![]() |
-84.3 ![]() |
244.1 ![]() |
11.56 | |
39 | (-16, 3) | 29.5 ![]() |
13.7 | 7.5 ![]() |
-95.4 ![]() |
241.8 ![]() |
14.1 | |
40 | (-16, 9) | 22.6 ![]() |
15.3 | 6.3 ![]() |
-54.0 ![]() |
266.1 ![]() |
11.9 | |
41 | (-16, 15) | 13.9 ![]() |
7.8 | 3.5 ![]() |
-32.9 ![]() |
241.2 ![]() |
6.6 | |
42 | (-9, -39) | 4.7 ![]() |
6.2 | 1.8 ![]() |
44.0 ![]() |
370.3 ![]() |
3.5 | |
43 | (-10, -16) | 10.0 ![]() |
4.3 | 2.9 ![]() |
-43.8 ![]() |
280.3 ![]() |
5.5 | |
44 | (-9, -4) | 25.8 ![]() |
18.2 | 7.6 ![]() |
-57.8 ![]() |
280.5 ![]() |
14.3 | |
45 | (-10, 3) | 25.1 ![]() |
13.1 | 7.9 ![]() |
-64.0 ![]() |
296.8 ![]() |
14.7 | |
46 | (-10, 9) | 19.8 ![]() |
31.5 | 4.4 ![]() |
-75.1 ![]() |
210.2 ![]() |
8.2 | |
47 | (-10, 15) | 7.4 ![]() |
6.0 | 1.7 ![]() |
-104.9 ![]() |
224.5 ![]() |
3.3 | |
48 | (-4, -9) | 9.1 ![]() |
4.9 | 4.5 ![]() |
-20.0 ![]() |
473.5 ![]() |
8.5 | |
49 | (-4, -4) | 31.9 ![]() |
21.5 | 9.7 ![]() |
-20.6 ![]() |
288.5 ![]() |
18.2 | |
50 | (-4, 3) | 26.3 ![]() |
17.6 | 6.7 ![]() |
-35.3 ![]() |
240.3 ![]() |
12.5 | |
51 | (-4, 9) | 13.7 ![]() |
9.5 | 4.9 ![]() |
-61.4 ![]() |
342.2 ![]() |
9.3 | |
52 | (-4, 15) | 8.7 ![]() |
5.7 | 2.4 ![]() |
-68.0 ![]() |
260.8 ![]() |
4.5 | |
53 | (-4, 21) | 3.4 ![]() |
4.0 | 0.1 ![]() |
255.3 ![]() |
13.2 ![]() |
0.1 | |
54 | (3, -33) | 9.1 ![]() |
6.2 | 0.6 ![]() |
134.2 ![]() |
69.0 ![]() |
1.2 | 7.3 |
55 | (3, -4) | 26.9 ![]() |
12.2 | 7.6 ![]() |
7.3 ![]() |
268.8 ![]() |
14.3 | |
56 | (3, 3) | 13.4 ![]() |
6 | 3.6 ![]() |
-1.1 ![]() |
254.7 ![]() |
6.7 | |
57 | (3, 9) | 10.5 ![]() |
5.5 | 4.4 ![]() |
95.0 ![]() |
396.0![]() |
8.2 | |
58 | (3, 51) | 4.8 ![]() |
5.6 | 0.8 ![]() |
78 ![]() |
168.2 ![]() |
1.6 | 7.0 |
59 | (3, 69) | 10.0 ![]() |
4.6 | 1.3 ![]() |
-40.9 ![]() |
126.9 ![]() |
2.51 | 16.7 |
60 | (9, -16) | 8.1 ![]() |
10.8 | 2.4 ![]() |
38.0 ![]() |
278.1 ![]() |
4.5 | |
61 | (9, -4) | 12.4 ![]() |
7.0 | 5.4 ![]() |
-54.0 ![]() |
411.6 ![]() |
10.1 | |
62 | (9, 3) | 13.1 ![]() |
4.4 | 2.8 ![]() |
-70.8 ![]() |
205.9 ![]() |
5.3 | |
63 | (15, -70 ) | 6.4 ![]() |
5.0 | 3.4 ![]() |
170.3 ![]() |
501.9 ![]() |
6.4 | 4.1 |
64 | (15, -4 ) | 15.9 ![]() |
7.9 | 4.2 ![]() |
-97.8 ![]() |
250.0 ![]() |
7.8 | |
65 | (15, 3) | 19.6 ![]() |
7.7 | 2.2 ![]() |
-65.6 ![]() |
108.5 ![]() |
4.2 | |
66 | (15, 15) | 12.6 ![]() |
9.3 | 0.8 ![]() |
286.4 ![]() |
61 ![]() |
1.5 | |
67 | (15, 21) | 9.6 ![]() |
4.9 | 0.5 ![]() |
328.4 ![]() |
52.9 ![]() |
1 | 10.7 |
68 | (15, 57) | 6.1 ![]() |
4.6 | 0.2 ![]() |
-62.2 ![]() |
37.0 ![]() |
0.4 | 8.9 |
69 | (21, -9) | 12.8 ![]() |
5.3 | 0.7 ![]() |
331.2 ![]() |
52.9 ![]() |
1.3 | 4.0 |
70 | (21, 9) | 18.2 ![]() |
5.6 | 2.8 ![]() |
-75.7 ![]() |
145.8 ![]() |
5.2 | |
71 | (21, 15) | 5.9 ![]() |
4.1 | 3 ![]() |
47.4 ![]() |
473.2 ![]() |
5.6 | |
72 | (21, 21) | 13.0 ![]() |
5.7 | 2.8 ![]() |
-78.6 ![]() |
203.5 ![]() |
5.2 | 10.7 |
73 | (21, 45) | 5.5 ![]() |
4.6 | 4.1 ![]() |
80.7 ![]() |
704.6 ![]() |
7.7 | |
74 | (21, 63) | 7.0 ![]() |
4.7 | 1.7 ![]() |
-48 ![]() |
232.5 ![]() |
3.2 | |
75 | (27, -58) | 7.0 ![]() |
5.9 | 1.1 ![]() |
334.5 ![]() |
147.8 ![]() |
2.0 | 14.2 |
76 | (27, 3) | 17.9 ![]() |
11.2 | 2.3 ![]() |
-74.3 ![]() |
124.9 ![]() |
4.4 | 4.0 |
77 | (27, 9) | 20.7 ![]() |
9.1 | 2.4 ![]() |
-69.1 ![]() |
110.3 ![]() |
4.5 | |
78 | (27, 15) | 20.4 ![]() |
5.1 | 2.6 ![]() |
-94.6 ![]() |
121.6 ![]() |
4.9 | |
79 | (27, 21) | 8.3 ![]() |
7.0 | 2.1 ![]() |
-101.8 ![]() |
243.1 ![]() |
4 | |
80 | (27, 57) | 6.0 ![]() |
4.8 | 1.8 ![]() |
164.3 ![]() |
286.4 ![]() |
3.4 | |
81 | (33, 3) | 12.5 ![]() |
4.4 | 7.7 ![]() |
71.4 ![]() |
583.6 ![]() |
14.4 | 4.0 |
82 | (33, 15) | 10.8 ![]() |
6.7 | 1.6 ![]() |
-84.6 ![]() |
143.4 ![]() |
3.0 | 12.2 |
83 | (33, 51) | 6.4 ![]() |
4.5 | 2.9 ![]() |
184.8 ![]() |
431.6 ![]() |
5.5 | |
84 | (33, 57) | 10.4 ![]() |
5.5 | 0.5 ![]() |
401.7 ![]() |
52.9 ![]() |
1.0 | |
85 | (39, 9) | 5.9 ![]() |
8.0 | 3.0 ![]() |
44.1 ![]() |
487.9 ![]() |
5.7 | 12.2 |
86 | (45, -4) | 7.0 ![]() |
4.2 | 3.7 ![]() |
-121.9 ![]() |
501.4 ![]() |
6.9 | 4.0 |
87 | (45, 33) | 7.9 ![]() |
5.7 | 3.8 ![]() |
102.2 ![]() |
453.5 ![]() |
7.1 | |
88 | (45, 39) | 7.3 ![]() |
6.4 | 1.1 ![]() |
285.0 ![]() |
153.1 ![]() |
2.2 | |
89 | (51, -22) | 9.2 ![]() |
6.5 | 1.9 ![]() |
351.0 ![]() |
200.8 ![]() |
3.6 | |
90 | (51, 9) | 8.9 ![]() |
6.8 | 2.3 ![]() |
-49.5 ![]() |
245.1 ![]() |
4.3 | |
91 | (51, 51) | 4.3 ![]() |
7.4 | 0.6 ![]() |
229.8 ![]() |
143.4 ![]() |
1.2 | |
92 | (57, -63) | 4.7 ![]() |
7.3 | 1.6 ![]() |
-13.9 ![]() |
334 ![]() |
3.1 | |
93 | (57, -16) | 5.6 ![]() |
6.1 | 0.8 ![]() |
376.0 ![]() |
144.9 ![]() |
1.5 | |
94 | (57, 9) | 5.6 ![]() |
4.4 | 0.6 ![]() |
-202.0 ![]() |
106.1 ![]() |
1.1 | |
95 | (63, -58) | 9.2 ![]() |
7.6 | 0.5 ![]() |
389.1 ![]() |
52.9 ![]() |
0.9 | |
96 | (63, -16) | 9.4 ![]() |
5.4 | 0.9 ![]() |
267.0 ![]() |
94.0 ![]() |
1.7 | |
97 | (63, -4) | 13.3 ![]() |
10.0 | 0.8 ![]() |
128.7 ![]() |
61.9 ![]() |
1.6 | |
98 | (63, 51) | 7.5 ![]() |
5.9 | 1.6 ![]() |
302.6 ![]() |
200.7 ![]() |
3.0 | |
99 | (63, 57) | 2.2 ![]() |
5.0 | 1.4 ![]() |
-8.9 ![]() |
586.6 ![]() |
2.6 | |
100 | (69, -39) | 7.0 ![]() |
5.2 | 3.4 ![]() |
83.3 ![]() |
461.1 ![]() |
6.4 | 10.5 |
101 | (69, -4) | 8.9 ![]() |
6.3 | 0.7 ![]() |
116.2 ![]() |
83.1 ![]() |
1.4 | |
102 | (-33, 99) | 8.6 ![]() |
7.1 | 6.3 ![]() |
17.8 ![]() |
693.9 ![]() |
11.8 | |
103 | (-33, 129 | 6.3 ![]() |
4.2 | 1.4 ![]() |
-286.1 ![]() |
220.0 ![]() |
2.75 | 3.7 |
104 | (-21, 123 | 7.9 ![]() |
5.8 | 1 ![]() |
-58.7 ![]() |
119.8 ![]() |
1.8 | |
105 | (-15, 75) | 10.5 ![]() |
10.7 | 0.9 ![]() |
298.6 ![]() |
88.4 ![]() |
1.8 | |
106 | (-15, 81) | 9.8 ![]() |
4.9 | 1.3 ![]() |
89.2 ![]() |
128.1 ![]() |
2.4 | |
107 | (-10, 81) | 6.1 ![]() |
15.9 | 3.2 ![]() |
-7.4 ![]() |
502.9 ![]() |
6.1 | |
108 | (-10, 99) | 8.3 ![]() |
12.6 | 1.1 ![]() |
336.7 ![]() |
127.9 ![]() |
2.1 | |
109 | (-3, 105) | 5.6 ![]() |
5.6 | 3.2 ![]() |
3.0 ![]() |
534.4 ![]() |
6.02 | |
110 | (3, 111) | 5.9 ![]() |
4.2 | 1.7 ![]() |
293.2 ![]() |
280.6 ![]() |
3.3 | |
111 | (20, 75) | 7.5![]() |
4.6 | 0.8 ![]() |
295.0 ![]() |
108.2 ![]() |
1.6 | |
112 | (20, 81) | 8.7 ![]() |
7.0 | 0.5 ![]() |
106.6 ![]() |
61.7 ![]() |
1.0 | |
113 | (26, 75) | 7.61 ![]() |
5.8 | 2.0 ![]() |
-73.7 ![]() |
249.6 ![]() |
3.7 | |
114 | (26, 87) | 6.1![]() |
4.3 | 0.3 ![]() |
353.2 ![]() |
52.9 ![]() |
0.6 | |
115 | (33, 129) | 12.7 ![]() |
4.4 | 1.7 ![]() |
-306.6 ![]() |
130.7 ![]() |
3.3 |