...L[*]
As of March 6, there are 1121 L4 Trojans and 885 L5 Trojans.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... output[*]
In the following we will only present the pictures obtained with the hybrid integration method (HYB). Additional calculations have shown that all three methods give the same output; thus for all future integrations we have neglected the LIE and B-S methods.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... stability[*]
For an initial value of $\Delta \sigma =0^\circ$, the stability region encloses all values of proper eccentricity that are lower than $\approx $0.21; this value decreases to $\approx $0.1 for an initial $\Delta \sigma $ of $43^\circ$.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...$e_{{\rm INI}}=0.20$)[*]
We have omitted the figure for $e_{{\rm INI}}=0.25$ because it shows no new information.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... left[*]
Note that for high eccentricities the position of Lagrangian points differs from $\sigma=60^\circ$ and $\sigma=300^\circ$. Strictly speaking, these values are only valid for the restricted (circular) three-body problem.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...L[*]
The behavior of L5 was not different from L4 - thus we omit the corresponding figure.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... choice[*]
Note that we have obtained similar results for $3^\circ$ or $5^\circ$.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... model 3[*]
The percentage gives the number of stable orbits in between $\sigma=[0^\circ,120^\circ]$ for L4 and $\sigma=[240^\circ,360^\circ]$ for L5.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Copyright ESO 2006