Table 5: Reduced chi-square $\chi ^2_\nu $ and probability p of Gaussian distribution for the astrometric errors $\Delta\alpha\cos\delta$ and $\Delta \delta $ using the Pearson test.
  $(\alpha -\alpha _0)\cos\delta_0 = 1^{\circ}$
Declination $\Delta\alpha\cos\delta$ $\Delta \delta $
  $\chi ^2_\nu $ p $\chi ^2_\nu $ p

$-25\hbox {$^\circ $ }$
1.51 $1.43\times 10^{-2}$ 2.10 $9.59\times 10^{-6}$
$0\hbox{$^\circ$ }$ 1.67 $1.29\times 10^{-2}$ 1.73 $1.95\times 10^{-3}$
$25\hbox{$^\circ$ }$ 2.33 $8.12\times 10^{-8}$ 1.97 $1.12\times 10^{-3}$
$50\hbox {$^\circ $ }$ 0.97 0.511 1.18 0.309
$75\hbox{$^\circ$ }$ 0.84 0.783 1.22 0.273
$85\hbox {$^\circ $ }$ 1.06 0.659 1.02 0.424
  $(\delta -\delta _0)= 1^{\circ}$
Declination $\Delta\alpha\cos\delta$ $\Delta \delta $
  $\chi ^2_\nu $ p $\chi ^2_\nu $ p

$-25\hbox {$^\circ $ }$
1.19 0.286 0.76 0.885
$0\hbox{$^\circ$ }$ 1.62 $2.24\times 10^{-2}$ 1.35 $6.01\times 10^{-2}$
$25\hbox{$^\circ$ }$ 3.22 $4.62\times 10^{-4}$ 1.91 $5.57\times 10^{-4}$
$50\hbox {$^\circ $ }$ 2.23 $5.19\times 10^{-6}$ 2.18 $1.28\times 10^{-4}$
$75\hbox{$^\circ$ }$ 1.38 0.116 2.05 $1.99\times 10^{-3}$
$85\hbox {$^\circ $ }$ 1.22 0.260 2.98 $5.62\times 10^{-12}$


Source LaTeX | All tables | In the text