A&A 452, 303-309 (2006)
DOI: 10.1051/0004-6361:20054539
K. Oláh1 - H. Korhonen2 - Zs. Kovári1 - E. Forgács-Dajka3,1 - K. G. Strassmeier2
1 - onkoly Observatory of the Hungarian Academy of
Sciences, 1525 Budapest, PO Box 67, Hungary
2 - Astrophysical Institute Potsdam (AIP), An der Sternwarte 16, 14482
Potsdam, Germany
3 - Eötvös University, Department of Astronomy, 1518 Budapest,
PO Box 32, Hungary
Received 17 November 2005 / Accepted 6 January 2006
Abstract
Aims. Time-series spot modelling was used to follow the longitude changes of active regions responsible for the light variability of FK Com between 1987-2004.
Methods. The photometric data are analysed in the time-series mode of a spot modelling code. A scenario of one polar and two low-latitude active regions (hereafter spots, for simplicity) depicts the light variations very well. The role of the polar spot remains unclear because photometry in general does not provide direct latitudinal surface resolution, however, Doppler imaging results of FK Com also show very high latitude or even polar spots besides the low-latitude ones. We also used a light-curve inversion method to confirm some of the results.
Results. The two low-latitude spots slowly migrate around 90
and 270
longitudes with quasiperiods of 5.8 and 5.2 years. The spots prefer to stay alternately on one or the other, but on the same hemisphere of the star, with a separation of typically 90-140
.
We monitored a flip-flop in the light curve of FK Comae in 1999. The two low-latitude spots, being
140-180
from each other during the season, gradually decreased until they both practically vanished. Shortly thereafter, two new spots appeared and started to grow. One of the new spots was near the location of the old one, whereas the other turned up 90
shifted in longitude; consequently, the activity as a whole was shifted to the other hemisphere of the star. We followed a phase jump in 1997, when the two low-latitude spots got closer in longitude and finally merged, or else one of them vanished. A new spot appeared soon, shifted by 100
in longitude, but the activity remained on the same hemisphere.
Conclusions. The difference between flip-flops and phase jumps is demonstrated. The derived longitude changes of activity centres may allow us to better constrain the theoretical modelling on the time-behaviour of stellar magnetic activity.
Key words: stars: starspots - stars: activity - stars: atmospheres - stars: late-type - stars: imaging - stars: individual: FK Com
The phenomenon of photometric phase flip-flops was first described on FK Com by Jetsu et al. (1993) and extensively studied by Korhonen et al. (2002, 2004). Several single and binary stars are now known to exhibit quasi-periodic activity changes between active longitudes situated on opposite stellar hemispheres (see e.g. Berdyugina & Tuominen 1998). These results, originating directly from measurements, have become very fruitful for studying solar and stellar dynamos.
Recently, a number of theoretical dynamo papers have been published in order to explain the flip-flop phenomenon (Moss 2004, 2005; Fluri & Berdyugina 2004; Elstner & Korhonen 2005). The structure of magnetic fields of active stars which are composed of a strong poloidal and an additional smaller scale solar-like magnetic field has already been suggested by Walter & Byrne (1998) as a non-solar paradigm for active stars. It turns out that this magnetic configuration served as a starting point for describing flip-flops by dynamo models. Since FK Com is the star on which flip-flops were discovered and observed for the longest time, results of the dynamo calculations are usually compared to the observed features of this star.
The major drawback of most of the photometric modelling results of active stars is that the time resolution and sampling is rather limited, i.e., when only phased light curves over several rotations are used, the changes in spot positions and sizes are not followed well in time and could lead to spurious results. In this paper, we make use of the continuous data stream from automatic photoelectric telescopes (APTs; e.g. Strassmeier et al. 1997) and apply our spot-modelling code S POTM ODEL (Ribárik et al. 2002). This allowed us to follow the spot parameters with a good time resolution. Two interesting time periods, during 1997 and 1999, are also investigated using light-curve inversions. Our results are then compared with previous photometric modellings, with the available Doppler images, and with the most recent findings of the corresponding dynamo calculations.
For modelling we used a continuous 18 year long photometric dataset obtained between 1987-2004. Data are described and used in the studies by Korhonen et al. (2001, 2002, 2005), and for the University of Vienna twin APT details we refer to Strassmeier et al. (1997) and Granzer et al. (2001). For the present investigation only the V and y observations are used.
The data are analysed in the time-series mode of S POTM ODEL (see Ribárik et al. 2002, for a description). We fit the entire seasonal light variations of FK Com in one computer run by minimising the fit residuals with a Marquardt-Levenberg non-linear least square approach. The program runs through the whole dataset using preset subintervals and steps. This way a good phase-coverage of the actual fitted light curve is ensured. We used 14.4 days subintervals (observations from 6 consecutive rotations), and steps were always 4.8 days long (2 rotations).
The model assumes three active regions that are approximated by circular spots. It is not known whether these spots are huge cool regions or aggregates of smaller spots and faculae (active nests on the Sun). A long-term colour-index variability that reflects spot-temperature changes points towards the second possibility (see e.g. the case of IM Peg, Ribárik et al. 2002). When compared to the active regions of the Sun, the circular approach seems to be acceptable. Thus, in this paper, active regions are called spots, for simplicity.
Since photometric data have very limited latitude information, one spot is
put on the stellar pole to account for the general dimming of the star from
the unspotted level, and two other spots are fixed at 50
latitude. The
existence of high latitude spots up to 75
,
as well as low-latitude spots
down to about 35
,
was proven by Doppler images of FK Com (cf. Korhonen
et al. 2004, and references therein). Generally, the Doppler imaging
reveals many spots close to the polar region of FK Com, therefore supposing
a polar active region seems to be reasonable, and as mentioned earlier this
feature is mainly used for modelling the general brightness of the star.
The five unknown parameters in the procedure are the radii of the three spots and the longitudes of the two low-latitude spots. A spot temperature of 1000 K below the photospheric temperature of 5000 K is fixed and assumed to be uniform in the three spots. The average spot temperature of 4000 K is the mean spot temperature found from Doppler images (Korhonen et al. 2005), so its use is justified. A summary of the parameters is given in Table 1.
Phased light curves were used for obtaining spot filling factor maps of
the stellar surface with an inversion technique using the maximum entropy
method (e.g. Vogt et al. 1987). The exact formulation follows
the one by Lanza et al. (1998) closely. For the inversions, the stellar
surface was divided into areas of
,
and the stellar
parameters used in the inversion were the same as for S POTM ODEL. Due to the limited latitude information in the photometric data, this method
tends to put the spots in the centre of the visible stellar disk (30
for FK Com) where they have the maximum impact on the light curve.
As this method uses phased light curves, instead of the time of the observations, studying long time series of data is not as easy as with S POTM ODEL. For this reason light-curve inversions were only used for studying some specific, interesting time periods.
Table 1: Stellar and modelling parameters for FK Com*.
Our analysis using S POTM ODEL describes the time-series behaviour of the spot longitudes and spot areas for 18 years between 1987-2004. The spot placed to the stellar pole accounts for the uniform spottedness whose changes are reflected in the long-term light variation, whereas the lower latitude spots cause the rotational modulation of FK Com.
![]() |
Figure 1:
Comparing spot longitudes from our time series modelling (small
crosses and dots with error bars) with results from Korhonen et al.
(2002, 2004; big empty triangles and circles), and with spot
longitudes measured in all Doppler images of FK Com available to us to date
(Korhonen et al. 2005, bigger dots). The bi-modal distribution of
spot longitudes is evident using all of the three different techniques. The longitudes are plotted betwen 0![]() ![]() ![]() |
Open with DEXTER |
The stability of determining spot longitude values is presented in Fig. 1. The figure shows our resulting time-series spot longitudes, plotted together with those of phased light curves from Korhonen et al. (2002, 2004) and with all the spot longitudes measured in Doppler maps available to date (Korhonen et al. 2005). In the cited papers the authors used the same photometric dataset as we do here. Korhonen et al. (2002) analysed phased light curves (several in each season) using light-curve inversions with Occamian approach inversion technique (see their paper for more details). The agreement between longitude values derived by different techniques is very good, which shows the stability of our results. The advantage of the time-series analysis makes it possible to investigate the spot-longitude variability in detail.
![]() |
Figure 2:
From top to bottom: FK Com data; spot radii (crosses: spot 1,
dots: spot 2, triangles: polar spot); spot longitudes (crosses:
spot 1, dots: spot 2) for the years 1987-2004. Broken vertical lines represent the times when the two low-latitude spots are 180![]() ![]() ![]() |
Open with DEXTER |
Figure 2 shows the time-series spot modelling results for the entire
18-year dataset, together with the data themselves. The radius changes
of the polar spot follow the seasonal light variation of the star, whereas
the radii of spot 1 and spot 2 show fluctuations around an average
of 15
each (i.e. a spot area of about 2%). The total spottedness
is changing between 7-20%, which is comparable to the spot coverage of 1-20% on the northern hemisphere, reported by Korhonen et al. (2005)
based on Doppler images. A Fourier analysis of the total spottedness, i.e.
the sum of the areas of all three spots at a given time, was carried out with
the program package M UFRAN (Kolláth 1990). After removing the
long-term trend from the spot area changes, a clear periodicity of
years is found. Including all available photometric data
of FK Com back to 1966, and using the same procedure, the result is
years.
Longitudes of spot 1 and spot 2 on the bottom panel of
Fig. 2 also show continuous quasiperiodic changes. Fourier
analysis of the longitudinal motions reveals approximate periods of years for spot 1 and
years for spot 2.
![]() |
Figure 3:
Top: the distribution of longitudes of the two low-latitude spots
of FK Com when they are closer to each other a) around 0![]() ![]() ![]() ![]() |
Open with DEXTER |
![]() |
Figure 4: The distribution of longitude distances of the two low-latitude spots from the present results (horizontally shaded), from Korhonen et al. (2002, 2004; vertically shaded), and from Doppler maps (filled). Results of the present paper are plotted with respect to the left y-axis, the other results (lower in number) with respect to the right y-axis. |
Open with DEXTER |
The two low-latitude spots thus migrate with slightly different (the same
within 2)
periods around 90
and 270
evident from
Fig. 2, bottom panel. The shaded and clear time intervals in this
figure show when the spots are located on the same hemisphere of the star,
surrounding 0
and 180
,
respectively. The vertical dashed lines in
Fig. 2 thus mark the times of flip-flops, of which three agree
with those from Korhonen et al. (2004).
The migration of spots does not mean necessarily that the spots keep their identity through the studied time interval; rather, they are on migrating active longitudes, for which it is irrelevant if a spot is old or is newly emerged. A scenario of spots, both migrating between 0
and 360
(cf. Fig. 2, lower panel) and crossing each other's paths from time to time is not excluded. Except for the quasiperiodic changes of the longitudes, we study the positions of the spots relative to each other; thus, in the case of this latter scenario, all the following results and discussion remain valid.
The longitude distributions of the two low-latitude spots are plotted in Fig. 3 in two panels, from the shaded (a., spot longitudes closer to 0)
and clear (b., spot longitudes closer to 180
)
time intervals
from Fig. 2. This figure shows the evident flip-flop feature:
activity is located alternating on the opposite sides of the star. After
removing the long-term variations from the original dataset, we phased the
data separately for the two time-interval sets of spots as displayed in the
bottom panel of Fig. 3. Indeed, the light minima of the two subsets of
the original data occur near phases 0.0 and 0.5, as suspected from the
modelling results.
Figure 4 presents the distribution of spot separations from
S POTM ODEL, and results both from the light-curve inversions by Korhonen et al. (2002, 2004) and from available Doppler images. Spot distance is defined as the shorter longitude difference, thus always 180
or less. It can be seen that most of the time spots are about 90-140
apart from each other, i.e., significantly closer than 180
,
staying together on the same hemisphere of the star. The small
differences between the peaks of the three histograms in Fig. 4 are
probably due to the specialities of the different modelling techniques used.
Supposing a polar cap to account for the long-term
brightness change, the two lower latitude spots, on average, are closest (
115
)
to each other in the results from
S POTM ODEL. Modelling the overall brightness with light-curve
inversion results in a spotted belt around the star at the same latitude as
spots causing the rotational modulation; the results give the biggest spot
distances (
140
). Spot distances from Doppler images (
130
), which are not disturbed by preset spot locations, are between the results from the two different photometric approaches.
We stress that using two circular spots for modelling the rotational modulation is just an approximation. It is well possible that the two supposed spots make up just one elongated feature that we are not able to resolve. However, this does not affect the result of the alternating preferred spotted hemispheres, as Fig. 3 reveals.
Modelling results of Elstner & Korhonen (2005) for stars with
thick convection zones show that, after a spot decays, the new one appears
shifted by about 90.
Such sudden spot longitude shifts of
90
were found from our time-series results on three occasions,
in 1997, 1999, and possibly in 2002, but the poor data quality at the beginning of the 2002 season did not allow us to draw a firm conclusion. The phase shift of a newly emerged activity caused a flip-flop in 1999.
We next demonstrate the difference between flip-flops and phase-jumps through examples, studying both features in time-series modelled observations.
![]() |
Figure 5: Time-series fit for the 1999 dataset. Note the continuous change in the amplitude and the practically vanished amplitude at JD 2 451 310; and, that the rotation period of FK Com is 2.4 days. |
Open with DEXTER |
![]() |
Figure 6:
Time-series fit for the 1999 dataset ( top panel). The
spot longitudes are shown in the middle panel (circles:
spot 1, triangles: spot 2). Filled symbols are results
taken from Korhonen et al. (2002). The bottom panel shows spot sizes (circles: spot 1, triangles: spot 2, squares: polar spot). Note
the longitude discontinuity of spot 2 by about 90![]() |
Open with DEXTER |
![]() |
Figure 7: Modelling the 1999 dataset in 10 segments with light-curve inversion. Left panels show the data with the fits, the corresponding right panels are the maps of the spot filling factor. Note the very small amplitude in the light curve for this time period. |
Open with DEXTER |
The time-series fit of the dataset from 1999 is shown in Fig. 5. The fit follows the observed amplitude changes well down to the practical non-variability at JD 2 451 310, i.e., when the amplitude was less than 0.01 mag in V.
The resulting changes in the spot longitudes and sizes, together with the fitted dataset for 1999 is plotted in Fig. 6. Both low-latitude spots show slow longitudinal migration together with small, but systematic area changes of all three adopted spots. These variations account for the amplitude changes in the light variation from the beginning of the season until about JD 2 451 310 when the amplitude becomes practically zero (cf. Fig. 5).
Figure 6 shows that near JD 2 451 300 the size of spot 1 and
spot 2 gradually decreases, and finally both more-or-less
vanish. Shortly thereafter, two new spots appear and start to grow. The new
spot 1 is near the location of the old one, around 0
longitude,
whereas the new spot 2 turns out to be shifted by 90
to a
longitude of 260
.
This shift of the spot position means that most
of the activity is located now on the other hemisphere of the star than
before, i.e. we observe a flip-flop on FK Com. Note that just before
the flip-flop the light curve has a double humped shape and after it an
asymmetric shape, which naturally arise from the spot positions being about 180
and 90
apart from each other, respectively.
Using the same dataset, but with a light-curve inversion method, we confirm
the flip-flop event during the 1999 observing season. Figure 7
shows the modelled 1999 dataset divided into 10 segments between JD 2 451 280
and JD 2 451 340, i.e. around the time of the flip-flop. For better
phase coverage, data from 10 days was used together for one map, and the
dataset was moved 5 days in between the segments. This means that some data
points in the consecutive segments are the same. The position of the spot
concentration near 180
in the first two images of the left row has
abruptly changed to near 270
,
seen in the first three images of the
right row, thus changing the more active hemisphere in the same time. This event can be clearly seen from the phases of the photometric maxima (least spotted
phases). The features seen in the last two maps on the left (JD 2 451 300 and JD 2 451 310) are possibly artefacts. The amplitude of the light variation is
too small and erratic during this time to allow reliable images to be obtained.
![]() |
Figure 8: Time-series fit for the 1997 dataset. The light variability changes smoothly and is never below 0.1 mag. A sudden change in the light curve shape is seen shortly after JD 2 450 500. |
Open with DEXTER |
![]() |
Figure 9:
Time-series fit for the 1997 dataset ( top panel). The spot
longitudes are shown in the middle panel (circles: spot 1, triangles:
spot 2). Filled triangles are results of the light-curve inversion. The bottom panel shows spot sizes (circles: spot 1, triangles: spot 2,
squares: polar spot). Note that spot 2 either disappeared or merged
with spot 1 near JD 2 450 500, and a new spot 2 appeared shifted
by about 100![]() |
Open with DEXTER |
![]() |
Figure 10: Modelling the 1997 dataset in 10 segments with the light-curve inversion method. Left panels show the data with the fits, the corresponding right panels are the maps of the spot filling factor. |
Open with DEXTER |
The fit to the 1997 dataset is displayed in Fig. 8. The light
variability is smooth during the whole season, and the amplitude does not fall
below 0.1 mag. Only a sudden change in the light-curve shape is seen shortly
after JD 2 450 500. We observed a simple phase-jump on FK Com in 1997, as shown in Fig. 9, where the time-series spot coordinates and sizes are plotted. Around JD 2 450 500 spot 1 decreased or merged with
spot 2 near 230
longitude, and then shortly after a new spot appeared at 330
longitude, i.e., shifted by 100
,
as suggested by the theoretical modelling (Elstner & Korhonen, 2005). However, the
activity as a whole remained on the same hemisphere of the star. What we
observe is a decay of an old, and the emergence of a new, active region.
We analysed this whole dataset using light-curve inversion as well. The result, plotted in Fig. 10, confirms that we observed a phase-jump: spots in the first three images in the left row are getting closer to each other and stay near 200-250
for the rest of the season. A new spot emerges near 0
sometime around JD 2 450 500 as seen from the third image onwards. The main spot concentration remains in the same place, which can be followed well from the phases of the light-curve minima.
Concerning these results, we suggest that flip-flops and
phase-jumps are two different features, although they can be connected.
Phase jumps occur when an old active region disappears and a new one emerges,
with a phase shift relative to the position of the decayed spot. This can
happen at any time, and after the phase-jump still most of the activity can remain on the same hemisphere of the star. On the other hand, if the
separation of the two supposed active regions is close to 180 which,
according to Fig. 4 is not a typical case, the phase jump of the newly
emerged spot may induce a flip-flop as well, causing the change in the location of the activity to the other hemisphere (cf. Figs. 6 and 7). However, the interchange of the active hemisphere seems to occur smoothly in most cases, just as the consequence of spot migration (cf. Fig. 2, lower panel) when spots move away from each other until they reach 180
distance. Then they just continue their migration getting closer in the opposite hemisphere of the star and also changing the phases of the light-curve minima to the opposite side.
Our results would be highly supported if FK Com turns out to be the primary of a binary system, a possibility already proposed by Walter & Basri (1982). In this case, a similar scenario could be drawn on FK Com as on many other evolved close binaries, where the active longitudes point towards the companion and directly away from it. A good example (among many others) is UZ Lib, where by using 9 years worth of spectroscopic and photometric datasets, two stable active longitudes have been revealed as facing the unseen companion star and opposite to it, both from Doppler images and photometric modelling (see Oláh et al. 2002a,b, for details).
Recently, Kjurkchieva & Marchev (2005)
arrived at the conclusion from three-years of H
spectroscopy,
that the H
behaviour of FK Com can only be explained if the star is
indeed in a binary system with a high mass ratio. Figure 18 in Kjurkchieva &
Marchev (2005) shows the binary scenario of FK Com using the same
ephemeris as we have used in the present paper. This allows us to check the
spot positions of FK Com in the reference frame of the supposed binary. We
find, as shown in Fig. 2, that the two low-latitude spots are migrating
around 90
and 270
i.e., around the hypothetic substellar point
and opposite to it.
From time-series spot modelling we find
We adopt the view that the longitudinal migration of individual spots are good indicators of the changing surface magnetic field topology. Due to the fact that, for any spotted light-curve modelling technique, spot longitudes (longitude positions of activity complexes causing light-curve minima) are the most reliable outputs and, because photometry exists for several systems on a decade-long time frame, systematic time-series studies of spot longitudes will give an excellent observational base for calculating dynamo models (cf. the recent review by Strassmeier 2005, and references therein).
Our modelling of FK Com relies on the assumption that there are one polar spot
and two low-latitude spots as a proxy for the complex magnetic surface
structure. The dynamo model by Elstner & Korhonen (2005) predicts
a 90
change of the spot longitude during a flip-flop event for stars
with thick convective envelopes. This kind of longitudinal shift was indeed
observed by us during the flip-flop in 1999. However, 90
shifts
of spots are observed other times as well, in 1997 and in 2002, but then the
spots remained on the same hemisphere of the star. In these cases no flip-flop happened in the sense of changing the active hemisphere. The modelling results of flip-flops and phase-jumps were confirmed using a light-curve inversion technique.
Fluri & Berdyugina (2004) discuss two different sets of superposed axisymmetric and non-axisymmetric dynamo modes to generally explain the flip-flop phenomenon. Of their two possibilities, constant or oscillating modes, it seems that FK Com belongs to the case where alternating non-axisymmetric and constant axisymmetric modes are superposed. This suggests that the times between flip-flops are not strictly equidistant, as is also found for FK Com by Korhonen et al. (2004) and in the present paper. Furthermore, Moss (2005) raised the possibility of several other configurations that could explain flip-flops as well.
Further analyses of long-term datasets for deriving the longitude changes of activity centres may allow the theoretical modelling of the time-behaviour of the stellar magnetic activity to be better constrained.
Acknowledgements
The authors are grateful to the referee, Dr. J. Pelt, for stimulating and helpful comments and to J. Adams for the careful reading of the manuscript. KO, ZsK, and EFD appreciate support from the Hungarian Research Grants OTKA T-038013, T-043504, and T-048961. HK and KGS acknowledge the support from the German Deutsche Forschungsgemeinschaft, DFG project number KO 2320/1.