Table 5: Hf II branching fractions (BFs) and log gf-values sorted by upper level.
Upper Lower $\lambda_{\rm Air}$ $\sigma$ BFb gf log gf Unc.
levela (cm)-1 level (cm)-1 (Å) (cm)-1     This work APHc CBd (% in gf)
29405.129 15 084.288 6980.901 14 320.849 0.010 0.015 -1.820 -1.66   23
$\tau=29.7 ns$ 14 359.454 6644.592 15 045.677 0.010 0.014 -1.854 -1.55   23
J=2.5 13 485.554 6279.844 15 919.558 0.002 0.003 -2.541     22
  12 070.491 5767.199 17 334.634 0.003 0.003 -2.531 -2.26   21
  6344.381 4335.154 23 060.746 0.003 0.002 -2.822     22
  4904.869 4080.437 24 500.261 0.050 0.025 -1.596     24
  3644.633 3880.813 25 760.493 0.064 0.029 -1.535 -1.20   27
SA 3050.863 3793.373 26 354.278 0.159 0.070 -1.158 -0.95   25
SA 0.00 3399.790 29 405.145 0.697 0.244 -0.612 -0.49   11
        0.000          
31784.202 15 254.338 6047.994 16 529.832 0.002 0.002 -2.705     18
$\tau=21.5 ns$ 12 920.933 5299.831 18 863.276 0.005 0.004 -2.376     19
J=1.5 12 070.491 5071.200 19 713.702 0.003 0.002 -2.665     40e
  11 951.660 5040.812 19 832.542 0.044 0.031 -1.503 -1.74   20
  4904.869 3719.273 26 879.333 0.366 0.141 -0.850 -0.87   14
  3644.633 3552.700 28 139.564 0.222 0.078 -1.107 -0.97   17
  3050.863 3479.281 28 733.349 0.263 0.089 -1.052 -1.04   16
  0.00 3145.305 31 784.216 0.086 0.024 -1.624 -1.51   19
        0.004          
33180.970 15 084.288 5524.343 18 096.675 0.011 0.017 -1.773 -1.92   21
$\tau=18.1 ns$ 14 359.454 5311.594 18 821.506 0.038 0.053 -1.277 -1.51   20
J=2.5 13 485.554 5075.910 19 695.413 0.004 0.005 -2.270     17
  12 920.933 4934.449 20 260.033 0.018 0.022 -1.652 -1.94   19
  12 070.491 4735.663 21 110.460 0.004 0.004 -2.375     16
  4904.869 3535.546 28 276.095 0.329 0.205 -0.689 -0.54   15
  3644.633 3384.690 29 536.326 0.034 0.020 -1.708 -1.22   19
  3050.863 3317.984 30 130.111 0.059 0.032 -1.491 -1.36   20
  0.00 3012.897 33 180.978 0.462 0.209 -0.681 -0.71   14
        0.040          
33776.300 17 710.820 6222.810 16 065.466 0.003 0.004 -2.437     17
$\tau=34.8 ns$ 17 368.915 6093.122 16 407.406 0.002 0.002 -2.632     17
J=3.5 15 084.288 5348.390 18 692.015 0.006 0.006 -2.255     18
  13 485.554 4926.981 20 290.741 0.006 0.005 -2.318     19
  12 070.491 4605.774 21 705.796 0.018 0.013 -1.885 -1.83   20
  8361.846 3933.655 25 414.453 0.029 0.015 -1.813     17
  6344.381 3644.350 27 431.915 0.481 0.220 -0.657 -0.48   12
  4904.869 3462.640 28 871.431 0.048 0.020 -1.699 -1.30   19
  3050.863 3253.693 30 725.446 0.407 0.149 -0.828 -0.58   15
        0.001          
34123.965 15 254.338 5298.049 18 869.622 0.078 0.054 -1.270   -1.52 21
$\tau=24.5 ns$ 14 359.454 5058.164 19 764.509 0.007 0.004 -2.348     19
J=1.5 13 485.554 4843.981 20 638.409 0.010 0.006 -2.223     18
  12 920.933 4714.987 21 203.034 0.003 0.002 -2.731     18
  12 070.491 4533.163 22 053.467 0.043 0.022 -1.662     19
  11 951.660 4508.871 22 172.284 0.001 0.0003 -3.478     17
  4904.869 3421.437 29 219.104 0.022 0.006 -2.197   -1.87 20
  3644.633 3279.967 30 479.329 0.228 0.060 -1.221   -1.14 18
  3050.863 3217.287 31 073.114 0.119 0.030 -1.519   -1.35 21
  0.00 2929.633 34 123.981 0.485 0.102 -0.992   -1.03 14
        0.002          
34355.172 15 084.288 5187.738 19 270.858 0.020 0.030 -1.529 -1.70   20
$\tau=16.2 ns$ 14 359.454 4999.676 19 995.716 0.008 0.011 -1.946 -2.04   20e
J=2.5 12 920.933 4664.127 21 434.238 0.058 0.070 -1.155 -1.36   16
  12 070.491 4486.130 22 284.675 0.021 0.023 -1.638 -1.49   18
  6344.381 3569.034 28 010.790 0.432 0.306 -0.514 -0.40   12
  4904.869 3394.576 29 450.305 0.111 0.071 -1.147 -1.13   18
  3644.633 3255.273 30 710.536 0.096 0.057 -1.247 -1.13   20
  3050.863 3193.524 31 304.321 0.203 0.115 -0.939 -1.03   17
  0.00 2909.917 34 355.184 0.048 0.023 -1.645 -1.55   20
        0.002          
34942.411 18 897.640 6230.834 16 044.778 0.002 0.010 -1.985     16
$\tau=8.4 ns$ 17 830.392 5842.220 17 112.039 0.006 0.020 -1.693   -1.57 16
J=2.5 17 710.827 5801.680 17 231.608 0.002 0.006 -2.221     17
  15 084.288 5034.317 19 858.130 0.001 0.004 -2.433     15
  14 359.454 4857.029 20 582.967 0.0001 0.0003 -3.511     14
  13 485.554 4659.204 21 456.888 0.003 0.006 -2.211     16
  12 920.933 4539.757 22 021.436 0.001 0.003 -2.564     17
  12 070.491 4370.945 22 871.921 0.038 0.077 -1.111   -0.94 17
  6344.381 3495.743 28 598.039 0.076 0.099 -1.005   -0.99 18
  4904.869 3328.209 30 037.553 0.026 0.030 -1.519   -1.33 20
  3644.633 3194.191 31 297.783 0.283 0.310 -0.509   -0.68 17
  3050.863 3134.717 31 891.570 0.331 0.349 -0.458   -0.60 15
SA 0.00 2861.009 34 942.439 0.231 0.203 -0.693   -0.77 20
        0.000          
38498.566 20 134.976 5444.046 18 363.587 0.006 0.044 -1.360   -1.47 19
$\tau=5.1 ns$ 17 710.827 4809.186 20 787.729 0.001 0.007 -2.163     15
J=3.5 17 368.915 4731.360 21 129.663 0.010 0.050 -1.300   -1.06 19
  15 084.288 4269.695 23 414.286 0.010 0.044 -1.352     20
  13 485.554 3996.786 25 013.029 0.007 0.028 -1.555     19
  12 070.491 3782.780 26 428.080 0.011 0.036 -1.445   -1.05 19
  8361.846 3317.257 30 136.718 0.002 0.006 -2.251     18
  6344.381 3109.112 32 154.196 0.227 0.515 -0.288   -0.25 18
  4904.869 2975.879 33 593.713 0.241 0.502 -0.299   -0.21 17
SA 3050.863 2820.225 35 447.726 0.483 0.904 -0.044   -0.14 13
        0.002          
42518.148 20 134.976 4466.389 22 383.172 0.018 0.095 -1.024   -0.59 19
$\tau=2.3 ns$ 18 897.640 4232.386 23 620.681 0.050 0.234 -0.631   -0.09 19
J=1.5 17 830.392 4049.446 24 687.760 0.018 0.077 -1.112   -0.54 19
  17 368.915 3975.139 25 149.238 0.005 0.020 -1.697     18
  15 254.338 3666.819 27 263.826 0.005 0.017 -1.766     21
  14 359.454 3550.285 28 158.712 0.001 0.004 -2.358     17
  13 485.554 3443.418 29 032.588 0.001 0.003 -2.580     17
  12 070.491 3283.379 30 447.656 0.013 0.036 -1.448   -0.89 20
  4904.869 2657.844 37 613.290 0.068 0.125 -0.902   -0.61 21
SA 3644.633 2571.675 38 873.522 0.492 0.848 -0.071   0.09 15
  3050.863 2532.981 39 467.315 0.006 0.010 -2.004   -0.98 18
SA 0.00 2351.216 42 518.173 0.323 0.466 -0.331   -0.73 19
        0.000          
42770.596 20 134.976 4416.575 22 635.620 0.001 0.006 -2.257     18
$\tau=2.6 ns$ 18 897.640 4187.663 23 872.941 0.012 0.048 -1.322   -0.40 19
J=1.5 17 830.392 4008.461 24 940.178 0.016 0.058 -1.233     22
  17 368.915 3935.634 25 401.674 0.034 0.123 -0.911   -0.28 23
  15 254.338 3633.183 27 516.231 0.013 0.040 -1.403     21
  14 359.454 3518.741 28 411.130 0.045 0.129 -0.888   -0.29 20
  13 485.554 3413.734 29 285.036 0.027 0.072 -1.146   -0.51 22
  12 920.933 3349.161 29 849.646 0.009 0.024 -1.623     21
  3050.863 2516.882 39 719.738 0.748 1.093 0.039   0.09 9
  0.00 2337.338 42 770.603 0.045 0.057 -1.245   -1.23 21
        0.050          
43044.258 26 996.382 6229.629 16 047.880 0.003 0.020 -1.705     23
$\tau=1.8 ns$ 18 897.640 4140.198 24 146.622 0.003 0.008 -2.113     22
J=0.5 17 830.392 3964.949 25 213.872 0.039 0.103 -0.988   -0.44 25
  15 254.338 3597.401 27 789.917 0.049 0.105 -0.977   -0.03 22e
  14 359.454 3485.170 28 684.796 0.010 0.021 -1.688     22
  12 920.933 3318.730 30 123.337 0.003 0.006 -2.232     23
  11 951.660 3215.266 31 092.646 0.003 0.005 -2.310     22
  3644.633 2537.333 39 399.627 0.083 0.089 -1.051   -0.52 24
SA 0.00 2322.476 43 044.281 0.806 0.725 -0.140   -0.77 12
        0.001          
43680.787 28 458.225 6567.393 15 222.537 0.005 0.053 -1.274     16
$\tau=3.3 ns$ 21 638.008 4535.363 22 042.771 0.013 0.074 -1.133     15
J=2.5 20 134.976 4245.845 23 545.808 0.014 0.070 -1.154   -0.57 17
  18 897.640 4033.860 24 783.146 0.011 0.049 -1.314     23e
  17 830.392 3867.316 25 850.397 0.042 0.170 -0.770   -0.39 16
  17 710.827 3849.511 25 969.959 0.126 0.509 -0.293   -0.10 16
  15 084.288 3495.931 28 596.501 0.066 0.220 -0.659   -0.41 17
  13 485.554 3310.827 30 195.241 0.018 0.054 -1.270   -0.74 18
  12 920.933 3250.053 30 759.854 0.001 0.004 -2.397     14
  12 070.491 3162.612 31 610.285 0.062 0.168 -0.774   0.40 51e
  6344.381 2677.554 37 336.422 0.007 0.014 -1.866   -1.41 17
  4904.869 2578.148 38 775.924 0.133 0.242 -0.617   -0.23 17
SA 3644.633 2496.989 40 036.155 0.154 0.262 -0.581   -0.30 19
SA 3050.863 2460.495 40 629.941 0.337 0.557 -0.254   -0.13 15
  0.00 2288.627 43 680.850 0.002 0.003 -2.544     44e
        0.009          
45643.263 26 996.382 5361.350 18 646.833 0.006 0.025 -1.608     17
$\tau=2.2 ns$ 18 897.640 3737.869 26 745.608 0.192 0.367 -0.436   0.16 14e
J=0.5 17 830.392 3594.435 27 812.847 0.011 0.019 -1.726     18
  15 254.338 3289.725 30 388.922 0.017 0.024 -1.611     17
  14 359.454 3195.621 31 283.777 0.067 0.093 -1.032   -0.40 18e
  11 951.660 2967.233 33 691.588 0.238 0.286 -0.543   -0.14 17
  3644.633 2380.305 41 998.619 0.397 0.307 -0.513   -0.51 14
  0.00 2190.218 45 643.278 0.069 0.045 -1.345     19
        0.003          
46495.401 27 285.047 5204.080 19 210.343 0.002 0.006 -2.195     12
$\tau=2.7 ns$ 26 996.382 5126.812 19 499.866 0.013 0.037 -1.437     58e
J=0.5 18 897.640 3622.451 27 597.752 0.040 0.058 -1.233     17
  17 830.392 3487.576 28 665.007 0.117 0.159 -0.800   -0.32 17
  15 254.338 3199.991 31 241.056 0.207 0.235 -0.629   0.05 15
  14 359.454 3110.877 32 135.953 0.286 0.307 -0.513   -0.02 14
  12 920.933 2977.584 33 574.472 0.125 0.123 -0.911   -0.32 18
  11 951.660 2894.037 34 543.678 0.018 0.017 -1.770     18
  3644.633 2332.965 42 850.770 0.187 0.113 -0.946   -0.76 16
  0.00 2150.072 46 495.431 0.005 0.003 -2.568     15
        0.000          
46674.354 28 546.991 5514.988 18 127.371 0.006 0.049 -1.313     18
$\tau=2.1 ns$ 27 285.047 5156.049 19 389.295 0.003 0.026 -1.583     16
J=1.5 26 996.382 5080.411 19 677.963 0.005 0.040 -1.393     16
  20 134.976 3766.916 26 539.377 0.154 0.623 -0.206   0.34 14e
  18 897.640 3599.111 27 776.711 0.028 0.104 -0.981     18
  17 830.392 3465.938 28 843.954 0.005 0.017 -1.778     17
  15 254.338 3181.762 31 420.036 0.008 0.023 -1.633     17
  13 485.554 3012.186 33 188.811 0.008 0.020 -1.692   -0.09 17
  12 920.933 2961.795 33 753.445 0.077 0.194 -0.712     20
  12 070.491 2889.003 34 603.874 0.010 0.024 -1.620     17
  11 951.660 2879.115 34 722.707 0.033 0.078 -1.107   -0.47 20
  4904.869 2393.362 41 769.497 0.447 0.732 -0.136   -0.07 14
  3644.633 2323.261 43 029.730 0.183 0.282 -0.550   -0.62 19
  3050.863 2291.635 43 623.516 0.020 0.029 -1.531     19
  0.00 2141.828 46 674.387 0.010 0.013 -1.874     18
        0.003          
47904.443 28 546.991 5164.536 19 357.430 0.005 0.054 -1.266     15
$\tau=2.0 ns$ 27 285.047 4848.449 20 619.394 0.010 0.105 -0.981     17
J=2.5 21 638.008 3806.060 26 266.431 0.143 0.930 -0.031   0.39 17
  20 134.976 3600.051 27 769.464 0.021 0.124 -0.907     16
  18 897.640 3446.485 29 006.754 0.018 0.097 -1.014     19
  17 830.392 3324.168 30 074.065 0.016 0.081 -1.093     19
  15 084.288 3046.041 32 819.952 0.024 0.101 -0.996   0.04 23e
  14 359.454 2980.197 33 545.040 0.006 0.024 -1.620     18
  13 485.554 2904.530 34 418.889 0.030 0.113 -0.947     17
  12 920.933 2857.649 34 983.523 0.038 0.141 -0.850   -0.35 18
  12 070.491 2789.827 35 833.945 0.034 0.119 -0.923     18
  6344.381 2405.424 41 560.070 0.433 1.126 0.052   0.21 15
  4904.869 2324.890 42 999.584 0.199 0.485 -0.315   -0.49 18
  3644.633 2258.686 44 259.818 0.011 0.026 -1.590     18
  3050.863 2228.784 44 853.579 0.004 0.009 -2.031     19
        0.008          
49840.585 31 877.888 5565.550 17 962.686 0.002 0.036 -1.448     18
$\tau=3.1 ns$ 28 458.225 4675.443 21 382.363 0.008 0.090 -1.048     17
J=4.5 28 104.889 4599.439 21 735.691 0.031 0.313 -0.504     16
  23 145.617 3744.960 26 694.968 0.072 0.487 -0.312   0.40 16
  21 638.008 3544.763 28 202.569 0.007 0.040 -1.402     16
  17 710.827 3111.479 32 129.740 0.002 0.011 -1.976     15
  17 389.109 3080.628 32 451.489 0.264 1.212 0.083   0.37 17
  15 084.288 2876.331 34 756.309 0.217 0.868 -0.062   0.28 17
SA 8361.846 2410.140 41 478.755 0.376 1.057 0.024   0.24 15
  6344.381 2298.343 43 496.218 0.019 0.048 -1.320     19
        0.003          
52340.079 32 778.16 5110.551 19 561.912 0.007 0.124 -0.908     17
$\tau=1.9 ns$ 31 877.888 4885.698 20 462.188 0.004 0.063 -1.202     16
J=3.5 28 546.991 4201.718 23 793.086 0.002 0.025 -1.595     15
  28 458.889 4186.095 23 881.883 0.003 0.031 -1.512     17
  28 104.889 4125.069 24 235.180 0.010 0.111 -0.953     18
  21 638.008 3256.162 30 702.151 0.064 0.427 -0.370     20
  17 389.109 2860.310 34 950.978 0.061 0.316 -0.500   0.00 21
  17 368.915 2858.660 34 971.153 0.008 0.043 -1.365     16
  15 084.288 2683.349 37 255.797 0.458 2.082 0.319   0.64 14
  13 485.554 2572.930 38 854.557 0.017 0.070 -1.154     20
  12 070.491 2482.516 40 269.558 0.002 0.009 -2.040     18
  8361.846 2273.149 43 978.248 0.072 0.235 -0.628     21
  6344.381 2173.434 45 995.709 0.013 0.038 -1.419     19
  4904.869 2107.470 47 435.221 0.043 0.122 -0.915     18
  3050.863 2028.188 49 289.231 0.179 0.464 -0.334     18
        0.056          
a SA indicates corrected for self absorption.
b Last number in each group represents the residual.
c Values reported by Andersen et al. (1976).
d Values reported by Corliss & Bozman (1962).
e Blended line.

Source LaTeX | All tables | In the text