Table 1: Effects of individual Standard Zernike terms vs. the non-aberrated (ideal) case.
Term Standard rms WFE Image rms COG displacement Chromaticity
  Zernike [nm] width increase [$\%$] [mas] [$\mu$as]
no. aber. / 0 0 0 0
1 1 0 0 0 0
2 $\rho \cos(\theta)$ 11.37 0 0 0
3 $\rho \sin(\theta)$ 32.44 0.1346 34.29 97.95
4 $\rho^2 \cos(2\theta)$ 13.02 1.263 0.030 -2.22
5 $2\rho^2-1$ 26.03 4.927 0.119 -9.27
6 $\rho^2 \sin(2\theta)$ 26.48 0.3199 21.35 -359.7
7 $\rho^3 \cos(3\theta)$ 11.76 1.881 0.045 -3.651
8 $(3\rho^3-2\rho)\cos(\theta)$ 12.51 1.881 0.045 -3.691
9 $(3\rho^3-2\rho)\sin(\theta)$ 32.49 1.455 -33.38 779.6
10 $\rho^3\sin(3\theta)$ 13.61 0.829 14.34 -118.3
11 $\rho^4\cos(4\theta)$ 8.928 1.079 0.028 -1.042
12 $(4\rho^4-3\rho^2)\cos(2\theta)$ 23.15 5.026 0.144 11.64
13 $(6\rho^4-6\rho^2+1)$ 34.21 9.965 0.262 20.22
14 $(4\rho^4-3\rho^2)\sin(2\theta)$ 38.69 2.083 -36.64 1019
15 $\rho^4\sin(4\theta)$ 6.423 -0.008 0.125 -652
16 $\rho^5\cos(5\theta)$ 5.597 0.3312 0.097 0.6501
17 $(5\rho^5-4\rho^3)\cos(3\theta)$ 246.53 7.817 0.234 26.46
18 $(10\rho^5-12\rho^3+3\rho)\cos(\theta)$ 25.99 6.186 0.175 14.92
19 $(10\rho^5-12\rho^3+3\rho)\sin(\theta)$ 20.61 3.329 2.229 -2142
20 $(5\rho^5-4\rho^3)\sin(3\theta)$ 26.35 4.571 -18.66 1372
21 $\rho^5\sin(5\theta)$ 5.376 -0.169 -1.346 -393.4


Source LaTeX | All tables | In the text