- ...
- On leave from Astro Space Center
of the P.N. Lebedev Physical Institute, Moscow, Russia.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ...

- Let the velocity components at the orbit apastron be
and
and the apastron distance be
.
Then,
and
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ...1983)
- Technically, it follows from the fact that the radius of periastron of a parabolic orbit
does not depend on
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ... models
- See Ivanov
Novikov (2001) for an overview of works on tidal disruption and
astrophysical applications.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ...1997)
- Note misprints in the Diener et al. (1997)
expression for the components of the tidal tensor.
The sign of all components should be opposite.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ... units
- In physical units the characteristic size of the tidal
cross section
M2/3 and the characteristic size of the
capture cross section
M.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ... allowed
- Note that these inequalities are also valid for the angle
that changes during the fly-by around the black hole:
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ...
hole
- Note that the fraction of stellar gas eventually accreted
onto the black hole may differ from the fraction of gravitationally
bound gas lost by the star. The physical processes occurring in the gas
after the tidal disruption event have been discussed by e.g. Evans
Kochanek (1989).
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.