A&A 447, 991-1009 (2006)
DOI: 10.1051/0004-6361:20053367
N. L. J. Cox1 - M. A. Cordiner2 - J. Cami3 - B. H. Foing4 - P. J. Sarre2 - L. Kaper1 - P. Ehrenfreund5
1 - Astronomical Institute "Anton Pannekoek'', University of Amsterdam, Kruislaan 403, 1098 SJ, Amsterdam, The Netherlands
2 -
School of Chemistry, The University of Nottingham, University Park, Nottingham NG7 2RD, UK
3 -
Space Science Division, NASA Ames Research Center, Mail Stop 245-6, Moffett Field, California 94035, USA
4 -
ESA/SCI-SR, ESTEC, PO Box 299, 2200 AG Noordwijk, The Netherlands
5 -
Astronomy Institute, Radboud University Nijmegen, PO Box 9010, 6500 GL Nijmegen, The Netherlands
Received 4 May 2005 / Accepted 19 October 2005
Abstract
The Large Magellanic Cloud (LMC) offers a unique laboratory to study the
diffuse interstellar bands (DIBs) under conditions that are profoundly different from
those in the Galaxy.
DIB carrier abundances depend on several environmental factors, in particular the local
UV radiation field.
In this paper we present measurements of twelve DIBs in five lines of sight to early-type
stars in the LMC, including the 30 Doradus region.
From the high resolution spectra obtained with VLT/UVES we also derive environmental parameters that
characterise the local interstellar medium (ISM) in the probed LMC clouds.
These include the column density components (including total column density)
for the atomic resonance lines of Na I, Ca II, Ti II, K I.
In addition, we derive the H I column density from 21 cm line profiles,
the total-to-selective visual extinction
and the gas-to-dust ratio N(H I)/
.
Furthermore, from atomic line ratios we derive the ionisation balance and relative UV field strength
in these environments.
We discuss the properties of the LMC ISM in the context of DIB carrier formation.
The behaviour of DIBs in the LMC is compared to that of DIBs in different local environmental
conditions in the Milky Way.
A key result is that in most cases the diffuse band strengths are weak (up to factor 5)
with respect to Galactic lines of sight of comparable reddening,
.
In the line of sight towards Sk -69 223 the 5780 and 5797 Å DIBs are very similar
in strength and profile to those observed towards HD 144217, which is typical of an environment
exposed to a strong UV field.
From the velocity analysis we find that DIB carriers (towards
Sk -69 243) are better correlated with
the ionised species like Ca II than with neutrals (like Na I and CO).
The most significant parameter that governs the behaviour of the DIB carrier is the strength of the UV field.
Key words: astrochemistry - Magellanic Clouds - ISM: clouds - ISM: lines and bands - ISM: abundances
In order to understand the formation and destruction mechanisms as well as the properties of the DIB carrier(s), it is desirable to study the DIB behaviour in a variety of environments. Studies of DIBs in external galaxies, such as the Magellanic Clouds, hold the possibility to constrain the nature of the DIB carriers. Hitherto, DIBs have been observed in only a handful of different galaxies, including the Magellanic Clouds (e.g. Morgan 1987; Ehrenfreund et al. 2002). Heckman & Lehnert (2000) demonstrated the feasibility of detecting DIBs in starburst galaxies, although even with current state of the art instrumentation this remains a difficult feat. The detection of DIBs in spectra of (bright) extra-Galactic supernovae (Rich 1987; Vladilo et al. 1987; D'Odorico et al. 1989; Sollerman et al. 2005) is very valuable but these studies are serendipitous. Until recently the only narrow DIBs observed in the LMC were those detected towards SN 1987A (Vladilo et al. 1987; Vidal-Madjar et al. 1987; and Welty et al. 1999), and R136a, the nuclear region of 30 Dor (Pettini & D'Odorico 1986). Vladilo et al. (1987) detected four DIBs conclusively, and two tentatively. Pettini & D'Odorico (1986) observed two DIBs towards R136a. Searches for broad DIBs (e.g. at 4430 Å) in the Magellanic Clouds have been carried out by Nandy et al. (1982), Houziaux et al. (1985) and Morgan (1987), but these did not result in convincing detections or constraints.
If DIB carriers are indeed carbonaceous molecules in the gas phase, then it is expected that they coexist with atomic and small molecular species in diffuse to dense interstellar clouds, and that they are thus affected by the same local physico-chemical conditions. Many investigations have been undertaken to characterise the Magellanic Cloud interstellar medium; detailed studies of interstellar atomic line profiles include those of André et al. (2004), Welty et al. (1999), Points et al. (1999), Caulet & Newell (1996), Vladilo et al. (1993), Wayte (1990), Songaila et al. (1986), Blades & Meaburn (1980), Blades (1980) and Walborn (1980). These studies provide velocity profiles for various atomic species (e.g. Ca II, Na I and Ti II), and insight in the conditions and kinematics of the interstellar medium probed by these lines of sight.
With the advent of space observatories including the International Ultraviolet Explorer (IUE), the Far Ultraviolet Spectroscopic Explorer (FUSE) and Hubble Space Telescope (HST), new spectral domains, and thus information on additional species, has become available. A large survey of the Magellanic Clouds by Danforth et al. (2002) has revealed a wealth of information on the structure of the LMC ISM and elemental abundances. Tumlinson et al. (2002) and André et al. (2004) also discuss several LMC lines of sight in great detail. The latter is of particular interest as physical parameters are derived for two LMC sightlines that are also included in our data set.
This paper presents a detailed study of the LMC targets that were highlighted by Ehrenfreund et al. (2002). The purpose of this study of diffuse interstellar bands in the Large Magellanic Cloud is to gain further insight into the physico-chemical properties of the DIB carriers (and/or their environment). The LMC, a SBm type galaxy, offers a unique laboratory where the conditions of the interstellar medium are profoundly different from those in the Galaxy. For example, it has an average metallicity one third to one quarter of that of the Milky Way (Dufour 1984), and its gas-to-dust ratio is two to four times larger (e.g. Koornneef 1982; Fitzpatrick 1986; Gordon et al. 2003). These differences have direct influences on the composition of the interstellar gas and dust. To improve our understanding of DIB carriers it is necessary to characterise the DIB behaviour, the local interstellar cloud conditions and the extinction properties of external galaxies such as the LMC. The 30 Dor (or Tarantula) nebular (i.e. H II) region is unique in the Local Group. It is often referred to as a mini-starburst, consisting of a dense cluster of OB stars producing a strong UV field, nebular emission lines, and harbouring dense clouds. We use the (atomic) line profiles of several key interstellar species (Ca II, Na I, Ti II, K I and H I) together with optical and infra red photometry to characterise the dust and gas in the local diffuse LMC medium. This study examines the relationship between the DIBs and atomic lines observed simultaneously in several LMC sightlines.
The targets and observations are discussed in Sect. 2.
In Sect. 3 we present the observed DIBs and their respective strengths.
Then we first derive the LMC reddening component after removal of the foreground Galactic contribution (Sect. 4.1)
and the total-to-selective visual extinction ratio
(Sect. 4.2),
which provides insight into the prevailing grain size and UV extinction by dust particles.
In order to derive detailed information on the local environmental conditions, interstellar column density
line profiles (and total column densities) for several neutral (Na I, K I, H I) and
ionised (Ca II, Ti II) gas-phase elements are constructed (Sects. 5.1 and 5.2),
from which the ionisation balance (Sect. 5.3) and the gas-to-dust ratio are deduced (Sect. 5.4).
In the final part we discuss the behaviour of the DIBs in the context of the chemical and physical conditions of the
gas and dust in the observed sightlines (Sect. 6), and explore possible implications for
the nature of the DIB carriers (Sect. 7).
High resolution (
-100 000) spectra of four moderately reddened LMC targets
and two unreddened LMC comparison stars (Fig. 1)
were obtained with the Ultraviolet and Visual Echelle Spectrograph
(UVES)
on the Very Large Telescope (VLT)
at the European Southern Observatory, Paranal, Chile.
During the nights of 24 to 27 September, 2001 (ESO program 67.C-0281), 16 exposures were obtained,
divided over three standard instrument set-ups, with a total integration time of approximately
300 min
on each of the six LMC targets.
The observations were performed under very good conditions, with a relative humidity of less
than 10% and
seeing between 0.4 and 0.8 arcsec.
Properties of the observed targets, and the corresponding lines of sight are listed in Table 1.
Three reddened targets are located in or near the LMC-2 supershell (i.e. near 30 Dor), and
three targets (two unreddened, one reddened) in the outskirts of the LMC (Fig. 1).
![]() |
Figure 1: The upper panel shows the location of the targets on an optical red image of the LMC. The targets observed in and near the 30 Dor star-forming region are shown in the lower panel, which is an enlargement of the rectangle shown in the upper panel. Target details are listed in Table 1. SN 1987A was extensively observed by Vladilo et al. (1987), Vidal-Madjar et al. (1987) and Welty et al. (1999). Image courtesy of Karl Gordon, based on Bothun & Thompson (1988), Kennicutt et al. (1995) and Parker et al. (1998). |
The data were taken with either the 390+564 (3400-4500 Å, 4600-5600 Å and 5700-6630 Å)
or 346+590 (3050-3850 Å, 4800-5750 Å and 5820-6800 Å) standard UVES settings (Kaufer et al. 2000),
where the numbers indicate the central wavelength (in nm) of the blue and red arm, respectively,
in order to obtain coverage of the blue and red spectral range accessible with UVES.
For 4 targets the K I region was observed in the 437+860 (3800-5000 Å,
6700-8500 Å and 8700-10 300 Å) setting.
The data were reduced using the UVES-pipeline (version 1.4.0)
context within the MIDAS data reduction package (version 02SEPpl1.2).
Selected calibration frames (ThAr arc lamp, bias and flatfield exposures) were given as input to the calibration
routine ( PREP/CALDB) and corresponding output frames and tables were used to reduce the science frames with the
optimal extraction routines contained in REDUCE/UVES.
Typically, about 1200 arclines were identified and fitted with a polynomial for each of the CCDs and set-ups,
resulting in a root mean square wavelength error of 0.003 Å in the blue and 0.008 Å in the red.
The resolving power as measured from the arclines is
,
corresponding to
5 km s-1
per resolution element.
The individual orders were then merged by an average method, where individual orders can be accessed for
cross-check purposes.
Telluric lines pollute the interstellar spectrum, in particular around the 6284 Å DIB and
in general longwards of 6800 Å.
Telluric correction was applied for these regions only, since it degrades the S/N of the resulting spectrum.
The original spectrum was divided by the telluric standard raised to the power ,
with
the initial value of
set to the ratio of airmass of both observations.
Stellar lines in the standard spectrum can interfere with those in the target star, and were
therefore, where required, removed with a spline fitted to the stellar spectrum
before division of the two spectra.
To improve the spectrum further it was in some instances necessary to shift the telluric standard
spectrum by a small amount, typically less than one wavelength bin.
Both
and the wavelength shift were varied iteratively until a minimum was reached for
the residual telluric lines.
LMC | ||||||
Ska | -69 223 | -69 243 | -67 2 | -68 135 | -67 5 | -70 120 |
HDa | 38029 | 38268 | 270754 | 269896 | 268605 | 270196 |
RMCa | 136 | 51 | 129 | 53 | 155 | |
RA (J2000) | 05 36 55.02 | 05 38 42.57 | 04 47 04.45 | 05 37 48.6 | 04 50 18.96 | 05 51 20.85 |
Dec (J2000) | -69 11 37.3 | -69 06 03.2 | -67 06 53.1 | -68 55 08.0 | -67 39 37.9 | -70 17 08.7 |
B (mag) | 11.70 | 9.63 | 11.304 [1] | 11.36 | 11.22 | 11.54 [2] |
V (mag) | 11.59 [3] | 9.50 [3] | 11.256 ![]() |
11.36 [2] | 11.34 [4] | 11.59 [1/4] |
B-V (mag) | 0.11 [3] | 0.13 [3] | 0.048 [1] | 0.00 [2] | -0.12 [4] | -0.06 [1/4,5,6] |
![]() ![]() |
0.27 | 0.40 | 0.21 | 0.22 | 0.10 | 0.10 |
![]() ![]() |
0.20 | 0.29 | 0.12 | 0.14 | 0.04 | 0.02 |
Sp type (optical) | B1 Ia | O3 If | B1.5 Ia [7] | B0 Ia | B0 Ia [8] | B1.5 Ia |
Sp type (uv) | WC4+OB [9] | WN4.5+OB [10] | B2 Ia[7] | ON9.7 Ia+ [11] | O9.7 Ib [8,11,12] | B1 Ia [8,11] |
Notes | Edge of 30 Dor | Centre of 30 Dor | Western edge of LMC | North of 30 Dor | Standard | Standard |
a Catalogue designations: Sk = Sanduleak 1970; HD = Henry Draper; RMC = Radcliffe number (Feast et al. 1960). b References: [1] Gordon et al. (2003); [2] Ardeberg et al. (1972); [3] Feitzinger & Isserstedt (1983); [4] Misselt et al. (1999); [5] Danforth et al. (2002); [6] Koornneef & Code (1981); [7] Rousseau et al. (1978); [8] Fitzpatrick (1991); [9] Breysacher et al. (1999); [10] Massey & Hunter (1998); [11] Walborn (1977); [12] Walborn & Blades (1997). |
LMC | ||||||
Sk -69 223 | Sk -69 243 | Sk -67 2 | Sk -68 135 | Sk -67 5 | ||
![]() ![]() |
0.20 | 0.29 | 0.12 | 0.14 | 0.04 | |
DIB |
![]() |
EW (
![]() |
EW (
![]() |
EW (
![]() |
EW (
![]() |
EW (
![]() |
4428 | 4431.95 | <180 | 150 (180) | <247 | <200 | <200 |
5705 | 5710.23 | 20 (9) | 25 (21) | <32 | <23 | <28 (B) |
5780 | 5785.57 | 145 (2) | ![]() |
![]() |
![]() |
![]() |
5797 | 5802.21 | 28 (6) | ![]() |
![]() |
![]() |
![]() |
5849 | 5855.08 | <8 | 11 (6) | 10 (5) | 5 (5) | <15 |
6196 | 6201.57 | 12 (3) | 7 (3) | 5 (3) | <7 | <7 |
6203(B) | 6208.67 | 50 (20) | 25 (14) | 19 (14) | 17 (17) | <17 |
6284 | 6289.51 | 240 (21) | 335 (47) | 150 (29) | 30 (30) | <163 |
6376 | 6381.71 | 5 (6) | <28 | <23 | <20 (B) | <17 |
6379 | 6384.96 | 12 (4) | 15 (4) | <10 | <10 (B) | <7 |
6613 | 6619.51 | 20 (8) | 50 (14) | 13 (8) | 5 (3) (B) | <13 |
![]() |
Figure 2:
Normalised spectra of the 5780 and 5797 Å DIBs observed in the line of sight towards
Sk -69 223, together with the low reddening standard Sk -70 120.
For comparison the corresponding DIB spectra of
HD 144217 (![]() ![]() |
![]() |
Figure 3:
Normalised and median smoothed spectra centred at the 6203, 6284, 6379 and 6613 Å
DIB spectral ranges observed towards
Sk -69 223, Sk -69 243,
Sk -67 2, Sk -68 135, Sk -67 5 and
Sk -70 120.
For comparison the corresponding DIB spectra for HD 149757 (red/grey)
and HD 144217 (blue/black) are shown at the bottom of each panel.
The 6284 Å DIB spectra have been corrected for telluric contamination as described in Sect. 2.1.
The vertical dashed lines show the Milky Way ( left) and LMC
( right) rest wavelengths of the
observed DIBs.
The
![]() ![]() |
![]() |
Figure 4: The panels of each figure show, from top to bottom, the K I, Na I, Ca II, Ti II and H I apparent column density velocity profiles for the LMC lines of sight towards Sk -69 223 ( top figure) and Sk -69 243 ( bottom figure). The velocity profile is constructed according to the method of Jenkins (1996, Sect. 5#. The H I profile is extracted from the large scale H I (21 cm) survey of the LMC by Staveley-Smith et al. (2003) and Kim et al. (2003). Johansson et al. (1994) list intensities and velocities of CO, CS, HCO+ and HCN lines towards 30 Dor. On the top panel we display the central DIB velocities, including error bars, for some observed DIBs (see also Sects. 2 and 6.2). The Na I and Ca II profiles for Sk -69 243 are in good agreement with the spectra published by Vladilo et al. (1993). |
![]() |
Figure 5: Apparent column density velocity profiles for K I, Na I, Ca II, Ti II and H I towards the LMC targets Sk -67 2 ( top panel) and SK -68 135 ( bottom panel). Construction of the profiles and the derivation of column densities as in Fig. 4. Although similar in reddening the column densities of the atomic species exhibit large differences. Sk -68 135 shows high column densities with respect to Sk -67 2, while its sightline produces slightly less reddening and weaker DIBs. On the top panel we display the central DIB velocities, including error bars, for some observed DIBs (see also Sects. 2 and 6.2). |
![]() |
Figure 6:
Apparent column density velocity profiles as in Fig. 4 for the two comparison targets
Sk -67 5 ( top) and Sk -70 120 ( bottom).
No DIBs were observed for these targets. A tentative weak ![]() |
![]() |
Figure 7: N(Na I)/N(H I) ( a) and N(Na I)/N(Ca II) ( b) at LMC velocities. For a detailed discussion of these ratios we refer to Sects. 5.2 and 5.3. We can distinguish between cold and warm components. A higher N(Na I)/N(H I) ratio indicates a colder environment. A depletion of 7.0 dex is typical for cold dense gas, and 10.0 dex corresponds to warm low density gas (e.g. Hobbs 1974a; Ferlet et al. 1985a,b; Hobbs 1976a). Ca III could be the dominant ionisation stage. A higher N(Na I)/N(Ca II) ratio means more depletion of Ca in cold dense clouds, a lower ratio points to a warm diffuse cloud. Note that both Na I and Ca II are trace ionisation stages. |
In order to measure the diffuse band central wavelengths, the observed DIB features
in the LMC targets were fitted with high-quality DIB profiles using VAPID
(obtained by MAC and PJS using the UCLES instrument on the Anglo-Australian Telescope in June 2004)
for the single cloud lines of sight towards
Sco (
,
).
The benefit of VAPID is that it does a Monte-Carlo error analysis, whereby Poisson noise is
generated and added to the datasets being fit, after which the least-squares velocity fitting is re-optimised;
this process is then repeated over a hundred times to determine the
1 sigma errors.
These DIB profiles, associated with very narrow atomic line components, provide a good template in
the absence of DIB assignments; using Gaussian fitting would not take account of asymmetry
present in some DIB profiles.
We tested the effect of DIB profile variability on the result and chose the 6613 DIB which shows the most
variation in profile in Galactic sightline studies (e.g. Cami et al. 2004).
Using the two (extreme) single cloud profiles (
Sgr and
Oph; cf. the
profiles of
Oph and
Sco in Walker et al. 2001) an
uncertainty of only 2.5 km s-1 is introduced in the least-squares velocity due to the difference in fine structure.
Therefore we conclude that this method, which takes some account of the DIB profile shape, is preferable to fitting with a Gaussian.
It is worth noting that if we had have simply applied a Gaussian fit to the observed profiles this would have resulted in less
accurate central velocities, but would still have shown these DIBs to be at LMC velocities of 200 to 300 km s-1.
The template profile rest wavelengths were set using the velocity of the (narrow) K I line such
that the least-squares velocity fitted to the LMC sightlines directly yielded the velocity of the DIB
carriers with respect to the heliocentric rest frame (Figs. 4 to 6).
For several targets a weak Galactic component is detected;
for example, Fig. 2 shows a MW 5780 feature at
km s-1.
The equivalent width (EW) was determined by applying a straight line continuum definition
and subsequent integration of the DIB profiles.
The error in EW is defined as
,
taking
as the range of integration, with FWHM adopted from Tuairisg et al. (2000)
in case of a non-detection, and
the statistical noise per bin of the adjacent (normalised) continuum.
The upper limit for the EW of non detected DIBs is EW
.
The rms of the (assumed Poisson) noise distribution is fairly constant and lies typically
between 0.003 and 0.010 depending on the brightness and exposure of the targets.
In the next two sections we derive various line of sight characteristics and conditions of the LMC interstellar medium. We defer a discussion of the full set of diffuse band data and a comparison between LMC and Galactic sightlines until Sect. 6.
Sk -69 223 | Sk -69 243 | Sk -67 2 | Sk -68 135 | Sk -67 5 | Sk -70 120 | ||
Sp type (UV) | WC4+OB | WN4.5+OB | B2 Ia | ON9.7 Ia | O9.7 Ib | B1 Ia | |
Sp type (optical)a | B1 Ia | O3 If | B1.5 Ia | B0 Ia | B0 Ia | B1.5 Ia | |
B-V (![]() |
0.11 | 0.13 | 0.048 | 0.00 | -0.12 | -0.06 | |
(B-V)0a (![]() |
-0.16 | -0.27 | -0.16 | -0.22 | -0.22 | -0.16 | |
Reddening: | |||||||
![]() ![]() |
0.42 | 0.30 | 0.35 | 0.27 | - | 0.06 | |
![]() ![]() ![]() |
0.27 | 0.40 | 0.21 | 0.22 | 0.10 | 0.10 | |
![]() ![]() ![]() |
0.07 | 0.14 | 0.11 | 0.09 | 0.04 | 0.09 | |
![]() ![]() ![]() |
0.20 | 0.26 | 0.10 | 0.13 | 0.06 | 0.01 | |
![]() ![]() ![]() |
0.19 | 0.32 | 0.13 | 0.14 | 0.02 | 0.02 | |
Adopted | |||||||
![]() ![]() |
0.20 | 0.29 | 0.12 | 0.14 | 0.04 | 0.02 | |
![]() ![]() |
0.06 | 0.04 | 0.04 | 0.02 | 0.03 | - |
a Spectral types from Table 1.
(B-V)0 adopted from Fitzpatrick (1988) for LMC supergiants of corresponding optical spectral type.
Intrinsic colour for WR/WN/WC stars from Smith et al. (1990): (B-V)
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
In addition, before a comparison between DIB results and LMC reddening can be made, an estimate
of the contamination to the total observed
by the foreground Milky Way (MW) material is required.
Brunet et al. (1975) derived a reddening of 0.07 mag caused by the MW foreground towards the LMC.
Later, a study of the MW foreground extinction by Schwering & Israel (1991) showed variations
of 0.06 to
0.17 mag on scales less than 9
.
From
photometry of Galactic foreground stars Oestreicher et al. (1995) derived a Galactic foreground map
with a resolution of 10
.
This map shows foreground
values from 0.00 to 0.15 mag, with an average of 0.02 mag.
We first estimate the foreground (FG) contribution by applying the relationship between MW gas and dust
to the observed column density of Na I and K I at velocities
v < 150 km s-1 (see Table 5).
This relationship (with large scatter) is given by Hobbs (1974a) as
N(Na I) =
1.8 and N(K I) =
2.0 cm-2.
The atomic interstellar line profiles are discussed in more detail in Sect. 5, where
the column densities for the different atomic species due to the foreground absorption and the LMC are presented.
For the LMC targets in this study the
values range from 0.02 to 0.11 mag (Table 3).
Sembach et al. (1993) give a slightly different relation, but the results are similar:
= 0.01-0.10 mag.
These values are consistent with the Galactic extinction as derived by Drimmel et al. (2003)
in the direction of the LMC, as well as with the foreground reddening map
derived from H I observations by Staveley-Smith et al. (2003), i.e.
= 0.06-0.08 mag.
In Table 3 both foreground estimates (Na I and reddening map) are subtracted from the observed
total reddening, yielding two estimates for the intrinsic LMC reddening.
The final adopted LMC reddening for each line of sight is obtained by averaging the results.
In Ehrenfreund et al. (2002) we reported our first results on the DIBs in the Magellanic Clouds.
In this paper we have taken a more detailed approach,
using different methods, to disentangle the Galactic foreground extinction and the LMC extinction
from the total observed extinction.
Also, for several lines of sight more accurate photometry has become available thus altering the observed colours.
Together this has resulted in
values that are (in most cases) significantly lower than reported previously.
For example, for Sk -67 2 the
previously listed was 0.35 mag, while the extinction curve measured by
Gordon et al. (2003) and Cartledge et al. (2005) yielded values of
mag and
mag, respectively.
Our updated estimate of the LMC reddening towards Sk -67 2,
=
mag, is now in much better agreement.
![]() |
References: Intrinsic infrared colours from:
[1] Wegner (1994);
[2] Johnson et al. (1966).
[3] Gordon et al. (2003);
[4] Morgan & Nandy (1982);
[5] 2MASS (Cutri et al. 2003);
[6] Clayton et al. (1983);
[7] Savage & Fitzpatrick (1984). [a] Colour excess derived by adopting intrinsic colours for supergiants from Wegner (1994), Schmidt-Kaler (1982), Johnson et al. (1966); [b] Errors in average ![]() ![]() |
In order to investigate the accuracy of the derived
value, we have used three different methods
(Gordon et al. 2003; Fitzpatrick 1999; and Cardelli et al. 1989).
All of these methods rely on the invariance of the
range of the extinction curve.
In deriving
the critical step is the determination of the colour excess.
To correct the observed colours either an unreddened comparison star or the star's intrinsic colour is needed.
In either case, it is important to know accurately the stellar surface temperature and gravity, i.e. the spectral
type and luminosity class, of the target star and, if applicable, of the comparison star.
In choosing an unreddened LMC comparison star the foreground Milky Way reddening is assumed to cancel out satisfactorily.
Alternatively, when using intrinsic colours, it is necessary to subtract the foreground average Galactic extinction
curve (
), corresponding to
(Table 3), from the derived extinction curve.
The choices adopted for comparison, either unreddened stars or intrinsic colours, are given
in Table 4.
Infrared
photometry from the 2MASS catalogue (Cutri et al. 2003) was used to obtain colours for the
LMC targets and the corresponding unreddened comparison stars (see on-line Table 9 for adopted photometry).
The results for
from the above methods and values previously reported are given in Table 4.
Error bars can be larger than derived because reported intrinsic colours for OB supergiants can differ by up to 0.2 mag in (K-V).
In Sect. 6 we show that these results do not reveal any dependence between
DIB strength and
as is inferred for Galactic lines of sight by Herbig (1995).
Fitzpatrick & Savage (1984) conclude that the extinction curve observed towards 30 Dor
is caused by a combination of Galactic foreground dust (equal to
= 0.06 mag),
LMC foreground dust (equal to
= 0.11 mag) and 30 Dor "nebular'' dust (
= 0.17 mag).
The LMC foreground component shows a strong far-UV non-linear rise, much like that observed toward
Sk -67 2, while the nebular component resembles that observed for Orion stars, i.e. it shows a
weak far-UV non-linear rise (per unit reddening, with respect to the average Galactic curve).
Clayton et al. (1983) determine
for 30 Dor.
The UV extinction curve (
)
has also been measured for
Sk -67 2
(Gordon et al. 2003) and it shows a steep, strong far-UV non-linear rise.
Savage & Fitzpatrick (1984) and Fitzpatrick & Savage (1984) construct an extinction curve for the pair
Sk -68 135 and Sk -67 5.
This curve shows a strong far UV non-linear rise, similar to that of Sk -67 2.
Fitzpatrick & Savage (1984) measured a 2200 Å bump depth (with respect to interpolated continuum)
for Sk -69 243 that is twice as deep as that for Sk -68 135, which is in turn seventeen times deeper
than that for Sk -67 5.
The observed steep far-UV extinction is indicative of the presence of smaller particles.
However, the relatively large
of 3.6 to 4.1 for these LMC sightlines, with respect to the Galactic average,
,
points
toward a LMC dust particle size distribution skewed toward larger grains.
Together with the atomic data (Sect. 5) the dust extinction properties discussed above
are important in
characterising the composition and conditions of the local diffuse LMC ISM
(e.g. the gas-to-dust ratio; Sect. 5.4) that affect the behaviour
of the DIB carriers (Sect. 6).
Sk -69 223 | Sk -69 243 | Sk -67 2 | Sk -68 135 | Sk -67 5 (STD) | Sk -70 120 (STD) | |
![]() ![]() |
0.20 | 0.29 | 0.12 | 0.14 | 0.04 | 0.02 |
log N (cm-2) | ||||||
LMC:
![]() |
||||||
Na I | 12.59 | 12.84 | 13.49 | 13.25 | 12.49 | 11.30 |
K I | 11.03b | 11.24 | 11.65 | 11.51 | 11.09 | 9.70b |
Ca II | 12.68 | 12.88 | 12.32 | 12.68 | 12.26 | 12.59 |
Ti II | 12.77 | 12.76 | 12.16 | 12.73 | 12.30 | 12.63 |
N (21 cm)a | 21.58 | 21.60 | 21.31 | 21.55 | 21.21 | 21.02 |
H Ia | 21.46 | 21.47 | 21.18 | 21.42 | 21.08 | 20.89 |
21.003,4 | 21.441 | 20.891 | ||||
H2 | ![]() |
![]() |
![]() |
|||
H
![]() |
21.502 | 21.492 | ||||
Milky Way:
![]() |
||||||
Na I | 12.77c | 12.99c | 12.44 | 12.26 | 11.80 | 12.01 |
Ca II | 12.23 | 12.05 | 12.09 | 12.05 | 12.15 | 11.96 |
Ti II | 12.05 | 11.97 | 12.01 | 11.98 | 11.98 | 12.15 |
Intermediate:
![]() |
||||||
Na I | - | 11.48 | 10.89 | 10.75 | 10.74 | 11.12 |
Ca II | 11.93 | 11.77 | 11.50 | 12.11 | 11.45 | 11.28 |
Ti II | - | - | 11.09 | 11.33 | - | - |
References: 1 Tumlinson et al. (2002); 2 André et al. (2004); 3 Cartledge et al. (2005); 4 Gordon et al. (2003). Notes: a LMC 21 cm column density from H I spectral line profiles provided by Staveley-Smith (Kim et al. 2003; Staveley-Smith et al. 2003). This is converted to N(H I) via N(H I) = ( ![]() ![]() |
The total atomic column density can be obtained by numerical integration over the full
column density profile (Table 5), or by summation over the area of functions
fitted to the component clouds that represent the profile.
The column density profiles can be decomposed into a set of Gaussian components, for which parameters were
derived using the SPLOT deblend command in IRAF.
The
of the fit was optimised using a minimum number of components, i.e. new components
were added until the fit rms roughly matched that in the continuum of the observed spectrum.
The discrete fit components may not necessarily represent individual clouds, but perhaps
"cloud systems''.
Fitting of individual clouds is very difficult due to the limited spectral resolution and S/N.
Due to the presence of unresolved structure, particularly in the Na I profiles, we
obtain slightly higher column densities than previously quoted in the literature
(see also Table 5).
Unresolved saturated structure in the absorption spectra does not strongly affect
the integrated Ti II, Ca II and K I column densities due to the low saturation in these lines.
The Poisson noise of the data introduces statistical errors of 5 to 10% (
0.02 to
0.05 dex)
on the integrated column densities.
For Na I D the error bars are larger, up to 20% (
0.08 dex), due to significant line saturation.
The error bars are reduced to 0.03 dex when the Na I (UV) line is used instead.
The use of the apparent optical depth method and simultaneous doublet correction (Jenkins 1996)
is appropriate, and certainly more accurate than profile fitting, for the achieved resolution of these data.
Tables 11 to 15 (on-line only) give the velocities, column densities and Gaussian widths for the individual components discerned in each of the six targets. Neutral hydrogen 21 cm profiles (Kim et al. 2003; Staveley-Smith et al. 2003) are shown in the bottom panels of Figs. 4-6.
When comparing the 21 cm neutral hydrogen velocity profile with that of the other atomic species
it should be noted that the H I material can, in principle, be situated both in front or behind the observed star;
therefore, strictly speaking, only upper limits can be inferred.
The velocity integrated LMC 21 cm hydrogen column density from H I is converted to N(H I) via N(H I) = (
)
N(21 cm).
Tumlinson et al. (2002) obtained this relationship by calibrating the 21 cm hydrogen emission measurement
to H I column densities derived from Ly
absorption profiles.
This relation provides a conservative correction for the possible apparent presence of additional neutral hydrogen in this
velocity range.
In addition, since the H I and, for example, the Ti II profiles have very similar structures
we will assume henceforth that, for the sightlines considered in this work, indeed most (if not all) of
the H I gas is associated with the absorbing material, and that therefore the corrected N(H I)
column density is a good approximation of the true H I column density in the line of sight.
Further support of this assumption is given by the good agreement between N(H I) derived from H(21cm)
and from Ly
(Gordon et al. 2003) for Sk -67 2.
Sk -69 223 | Sk -69 243 | Sk -67 2 | Sk -68 135 | Sk -67 5 (STD) | Sk -70 120 (STD) | |
![]() ![]() |
0.20 | 0.29 | 0.12 | 0.14 | 0.04 | 0.02 |
Ca II/Ti II | 0.78 | 1.23 | 1.45 | 0.85 | 0.89 | 0.91 |
Na I/K I | 37 | 40 | 71 | 55 | 25 | 37 |
Na I/Ca II | 0.85 | 0.98 | 14.8 | 3.8 | 1.7 | ![]() |
Na I/H I (
![]() |
1.1 | 2.4 | 19.5 | 6.5 | 2.6 | <0.12 |
Ca II/H I (
![]() |
1.6 | 2.4 | 1.3 | 1.7 | 1.5 | 5.0 |
Ti II/H I (
![]() |
2.0 | 2.0 | 0.9 | 2.0 | 1.7 | 4.1 |
log
![]() |
-1.38 | -1.40 | -1.72 | -1.38 | -1.47 | -0.95 |
K I/H I (
![]() |
0.04 | 0.06 | 0.28 | 0.12 | 0.10 | 0.007 |
![]() |
0.008 | 0.015 | 0.017 | 0.010 | 0.009 | 0.010 |
The gas-phase atomic material can be roughly associated with one of three locations: (i) the MW ( -40 < v < 80 km s-1), (ii) the intermediate velocity clouds (IVCs) ( 80 < v < 200 km s-1) and (iii) the LMC ( 200 < v < 330 km s-1). As already mentioned in Sect. 4.1, significant differences exist in the distribution of atomic species in the Galactic foreground material detected in sightlines towards the LMC (Fig. 13).
the cloud in which the absorption is produced.
This decrease results from the
disruption (e.g. by shocks) of interstellar grains, and the subsequent release
of Ca atoms from grains into the gas phase.
The ratio N(Na I)/N(Ca II) is thus an indicator of metal depletion, where variations
in this ratio are due to a difference in abundance, rather than to changes in the ionisation balance.
A higher ratio indicates more dust grains, and thus more molecules.
A low ratio 0.01 traces the warm diffuse medium (where calcium is not depleted).
However, for colder and denser clouds two processes influence this ratio;
severe depletion of calcium onto grains and a decreasing UV field, making Ca II the dominant
ionisation stage of calcium in the cold medium, with ratios larger than 100 (as for example observed in
the Galactic line of sight towards HD 149757, Sect. 6.3).
As shown in Fig. 11 and Table 6 the largest amount of calcium in
the gas phase (i.e. low ratio) corresponds to the sources showing the strongest DIBs.
Depletion of calcium or change of the dominant charge state (i.e. Ca I) would indicate
colder and denser regions in the line of sight, which would also affect the behaviour of DIB carrier molecules.
Sk -69 223 | Sk -69 243 | Sk -67 2 | Sk -68 135 | |
![]() |
3.6 or 4.1 | 3.7 | 3.6 | 4.1 |
![]() |
![]() |
![]() |
![]() |
![]() |
N(H I)/![]() |
![]() |
![]() |
![]() |
![]() |
(1021 mag-1 cm-2) |
In summary, the atomic line ratios show that
(1)
under the hypothesis that the relative effective strength of the UV radiation field can be derived
from the integrated N(Na I)/N(H I) ratio, lines of sight towards 30 Dor
(Sk -69 243 and Sk -69 223) and Sk -67 5 experience
a very similar UV field, while the line of sight towards Sk -68 135 is exposed to a
stronger UV field (ratio is about a factor 3 higher).
The line of sight towards Sk -67 2 (near a small H II region) indicates the strongest
effective UV field, with the ratio N(Na I)/N(H I) about a factor of three larger than for
Sk -68 135.
This is qualitatively consistent with André et al. (2004) who find a UV field strength of 3
and 3000 times the interstellar standard radiation field for Sk -67 5 and
Sk -68 135, respectively.
(2)
The 30 Dor targets (Sk -69 243 and Sk -69 223) have a low
N(Na I)/N(Ca II) ratio, indicative of a warm diffuse medium where Ca is not depleted onto grains;
this ratio is about 15 times higher for Sk -67 2, indicating a more dusty environment.
However, it would be more consistent with the previous result if the UV field is harsh enough to ionise
enough Ca II thus resulting in a higher N(Na I)/N(Ca II) ratio.
The ratio for Sk -68 135 is in between.
(3)
The electron density
cm-3 and the level of titanium depletion are similar
in all sources, which is not an a priori result.
![]() |
Figure 8:
K I ( top) and H I ( bottom) column density versus the reddening
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() |
Figure 9:
The 5780 Å ( top) and 5797 Å ( bottom) DIB equivalent width versus reddening.
Values for the LMC DIBs are for Sk -69 223 from
Tables 2, 3 and 5.
Milky Way interstellar cloud lines of sight are included to illustrate different
types of environment; ![]() ![]() ![]() ![]() |
![]() |
Figure 10:
The 6284 Å ( top) and 6613 Å ( bottom) DIB equivalent width versus reddening.
Values for the LMC DIBs are listed in Tables 2 and 3.
Milky Way interstellar cloud lines of sight are included to illustrate different
types of Galactic environment.
The diffuse clouds towards HD 144217 and HD 149757 are
typical examples of so-called ![]() ![]() ![]() |
Our results also show that the gas-to-dust ratio for these LMC lines of sight is
about twice that of the MW:
N(H I)/
cm-2 or
N(H I)/
cm-2(Bohlin et al. 1978),
N(H I)/
cm-2
and N(H I)/
cm-2 (Gordon et al. 2003).
In the bottom panel of Fig. 8 the H I column density is plotted as a function of reddening.
The dashed and dotted lines represent the different gas-to-dust ratios (N(H I)/
)
for both the MW and the LMC.
From the plotted data we derive N(H I)/
cm-2, and
N(H I)/
cm-2 for MW and LMC, respectively.
A good correlation with reddening is found for K I, whereas for H I all of the LMC column densities
lie above the mean Galactic line (Bohlin et al. 1978), but short of the dotted line that is the predicted
H I behaviour if solely determined by a 4:1 Galactic: LMC gas-to-dust ratio and assuming that the
grain characteristics are identical in the two galaxies.
In Fig. 11 (panel a) we show the 6284 and 6613 Å DIB strengths as a function of the gas-to-dust ratio. No clear trend can be resolved, though the data seem to suggest a decrease in DIB strength with increasing gas-to-dust ratio. It may be that this effect is simply due to differences in the amount of reddening in the lines of sight. If real, this would imply stronger DIBs for Galactic lines of sight with lower gas-to-dust ratios and provide evidence in support of a relationship between DIB strengths, the UV field and/or metallicity.
In general, the DIB strength is known to rise approximately linearly with increasing reddening, i.e. the dust column;
however, at high values of
scatter/dispersion becomes large (e.g. Wu et al. 1981;
Herbig 1993, 1995).
Possibly, DIBs correlate better with gas phase neutral or ionised atomic species, as will be
discussed in Sect. 6.2.
In Fig. 9 the
5780 and
5797 DIB equivalent widths
towards LMC target Sk -69 223 are plotted versus reddening, together with Galactic line-of-sight data.
The
6284 and
6613 DIB strengths are plotted for all LMC targets versus reddening in Fig. 10.
Diffuse interstellar clouds that are often used for comparison are the single clouds towards HD 149757
(
Oph; a
-type cloud) and HD 144217 (
Sco; a
-type cloud).
In addition, the lines of sight towards the Orion stars (
)
probe a highly ionised region,
which should, in this respect, represent a reference to the 30 Dor star-forming region.
Figures 9 and 10 show that the Sk -69 223 DIB strengths are in line with
the corresponding Galactic correlations.
The
6613 DIB (except for Sk -68 135) is in line with the Galactic relationship between DIB
strength and reddening.
The
5705, 5850, 6196, 6203, 6379 bands (not shown) are marginally weak with respect to their
Galactic counterparts.
This result is much more tentative due to the relatively large errors associated with the measured equivalent widths,
and the possible blending of a known stellar line with the 6203 Å DIB.
The
6284 is weaker than expected from the Galactic relation
(Fig. 10),
and the broad
4430 band (not shown) is an extreme case being exceptionally weak (see Table 2)
in the LMC for a given amount of reddening.
The 6284 Å DIB towards Sk -67 2 has a strength (per unit reddening) comparable to that of
a -type cloud.
Towards Sk -69 223 and Sk -69 243 the 6284 Å DIB is not quite that strong,
but is still significantly stronger than the 6284 DIB seen towards the
type cloud in
the direction of HD 149757 (and also the LMC targets Sk -68 73 and Sk -68 135).
A strong UV field is needed to excite the carrier of the 6284 Å DIB, which is the case in an edge dominated
cloud and not in a core dominated
cloud (Krelowski & Walker 1987).
For the 6613 Å DIB the difference in strength, if any, between the
and
type clouds is less clear,
for both the MW and the LMC lines of sight.
The 6284 Å DIB profile in both Sk -69 223 and Sk -69 243 is very similar to the one observed
towards HD 144217, while that of Sk -67 2 and Sk -68 135 is more like the one seen
towards HD 149757, although these have about three times less reddening in the line of sight,
and are exposed to a relatively strong UV field.
We will show in Sect. 6.2 that this is consistent with the picture arising from the analysis of the
interstellar atomic lines.
For Sk -68 135 both the 6284 and 6613 Å DIBs are weakened by a factor 10 compared to Sk -69 243,
while the reddening and the UV-bump strength are only a factor 2 smaller.
Additionally, because the gas-to-dust ratio is 1.5 times higher, the inferred gas column is roughly similar for both lines
of sight.
On the other hand, the inferred UV field is stronger (
2), the electron density is lower (
1.5), and the grain
disruption rate, i.e. N(Na I)/N(Ca II) (Sect. 5.3), is higher (
4) towards Sk -68 135,
possibly resulting in a more efficient destruction
(or less efficient formation) of both the 6284 and 6613 Å DIB carriers (although not necessarily by the same mechanism).
The similarity between the line of sight conditions towards Sk -69 223 and HD 144217
is especially evident from the 5780 and 5797 Å DIB profiles (Fig. 2 and Sect. 6.3).
The other DIB measurements (Fig. 3) are of insufficient quality to make a similar qualitative assessment.
![]() |
Figure 11:
The ![]() ![]() ![]() ![]() ![]() |
![]() |
Figure 12: The 6284 Å ( top) and 6613 Å ( bottom) DIB strengths as a function of K I column density. The LMC data are obtained from Tables 2 and 4. Galactic lines of sight (from Fig. 10) are included for comparison. The two reddened targets Sk -69 223 and Sk -69 243 show DIBs that are strong with respect to the K I column density, while those for Sk -68 135 and Sk -67 2 are weak with respect to the amount of potassium when compared to the Galactic trend. |
Sk -69 223 | HD 144217 | HD 149757 | |
![]() |
0.2 | 0.2 | 0.3 |
![]() |
3.6 or 4.1 | 4.0 | 3.1 |
![]() |
0.8(0.2) | 0.8 | 0.9 |
5780 DIB (mÅ) | 145(2) | 160 | 66 |
5797 DIB (mÅ) | 28(6) | 22 | 27 |
6284 DIB (mÅ) | 240(21) | 390 | 111 |
6613 DIB (mÅ) | 20(8) | 40 | 43 |
5780/5797 | 6 | 8 | 3 |
log N(Na I) (cm-2) | 12.59 | 12.94 | 13.85 |
log N(K I) (cm-2) | 11.03 | 11.19 | 11.85 |
log N(Ca II) (cm-2) | 12.68 | 11.73 | 11.76 |
log N(H I) (cm-2) | 21.46 | 21.10 | 20.73 |
N(Na I)/N(H I)
(![]() |
11 | 16 | 1318 |
N(K I)/N(H I)
(![]() |
0.37 | 1.23 | 13.2 |
N(Na I)/N(Ca II) | 0.9 | 16.2 | 123 |
N(H I)/![]() ![]() |
3.6 | 1.6 | 0.6 |
The next step is to explore the link between DIB strength and the column densities of the different neutral and ionised atomic elements investigated in Sect. 5, as well as the relation of the DIBs to the other LMC extinction properties. The 6613 Å DIB central velocity has been shown to closely follow that of the Ca II components in the MW (Sonnentrucker et al. 1999). No such distinct pattern is observed here between the 6613 Å DIB strengths and the Ca II column density. On the other hand, the coincidence of the central peak velocities of the 6613 Å DIB and the strongest Ca II components does agree with this previous finding. The observed central velocities of the 6196, 6203, 6284 and 6613 Å DIBs coincide, within the error bars, with each other and the strong atomic absorption associated with the LMC gas (Figs. 4 to 6). The broad 6284 Å DIB seems to be slightly offset toward lower velocities. For Sk -69 243 there seems to be a real dichotomy between the CO which probes dense material and the DIBs that are believed to probe diffuse material (Fig. 4 top panel of bottom figure). The DIB at 6613 Å has a central velocity corresponding to the higher velocity component in the Na I and K I profiles, while the CO central velocity corresponds with the lower velocity component. The higher velocity component in the Na I and K I profile shows the highest column densities for the warm inter-cloud region tracers Ca II and Ti II. Therefore, the 6613 Å DIB seems to be related to the warm inter-cloud material, confirming the results of Sonnentrucker et al. (1999).
In Fig. 12 we show the 6613 and 6284 Å DIB strengths versus the K I column density for the LMC lines of sight, together with a Galactic sample. For Sk -67 2 and Sk -68 135 the DIB strength is relatively weak with respect to the observed amount of Na I. This is in contrast with the earlier discussion (Fig. 10, Sect. 6.1) that for Sk -67 2 the DIB strength is the strongest observed per unit reddening. In Fig. 11 we plot LMC DIB strengths versus the column density ratios N(Na I)/N(K I), N(Ca II)/N(Ti II) and N(Na I)/N(Ca II) discussed in Sect. 5.3. We also included available data for Sk -69 202/SN 1987A (Vladilo et al. 1987; Welty et al. 1999). No clear relationship becomes apparent between any of these quantities and the DIB strengths. However, as discussed next, these different indicators are useful in characterising the local environmental conditions, and are therefore important tools when comparing different lines of sight.
For the dense and dusty line of sight towards HD 149757 the N(Na I)/N(Ca II) ratio is high because of significant depletion of calcium onto the dust grains. The lower N(Na I)/N(Ca II) ratio of 16 for HD 144217 is typical for quiescent Galactic sightlines. In the LMC this ratio is even more reduced (except for Sk -67 2) which could be due to (1) the lower metallicity and/or (2) the stronger effective UV field. The gas-to-dust ratio for Sk -69 223 is about twice that of HD 144217.
Given the 5780/5797 ratio of 6, the conditions towards Sk -69 223 seem to correspond to a
Galactic
-type line of sight.
Also, unlike the lines of sight discussed above, it is found that the
5797, 5780, 6196
and 6203 band strengths towards Sk -69 223 all lie within the Galactic target distribution in a plot of
equivalent width (EW) versus reddening
(see e.g. Figs. 9 and 10).
This in turn implies that the DIB equivalent width directly gives the DIB carrier column density.
Since the 5780 and 5797 Å DIBs are not weaker in Sk -69 223,
assuming the metallicity of the diffuse LMC ISM towards Sk -69 223 is a factor four lower than in the MW
(as is generally observed for the LMC).
This suggests that, relative to
,
the abundance of the 5780 Å DIB carrier is not affected by metallicity.
In contrast, the 6613 Å DIB is about a factor two weaker, possibly due to the lower metallicity of the LMC ISM.
This study has revealed a wealth of information that has been extracted from the echelle spectra covering a very broad spectral range, from the UV to the near infrared. We have studied in detail the diffuse interstellar bands that originate in an extra-Galactic diffuse medium of the LMC. We obtained equivalent widths and central peak wavelengths/velocities for eleven DIBs. In addition, as a function of velocity, we obtained detailed interstellar column density profiles for five key atomic elements.
There appears to be no direct relationship between DIB strength and ,
the indicator for the dust grain size distribution (Sect. 4.2).
The 6613 Å DIB strength is related to reddening similar to the Galactic
trend,
while the 6284 Å DIB is weakened with respect to the
Galactic relationship.
The atomic line profiles (Sect. 5) show that the majority of the LMC gas is receding at velocities
between 220 and 300 km s-1.
The neutral species show strong narrow components, corresponding to colder denser cloud components,
whereas the ionised species are more widely distributed, clearly tracing the warmer diffuse inter-cloud medium.
The atomic line ratios (Sect. 5.3) indicate large variations in the UV field that
seem to be connected to differences in observed DIB strengths.
Other indicators, like electron density and titanium depletion, do not differ among lines of sight, and
their impact on the DIB strength variation in the LMC seems to be less relevant.
Section 5.4 showed that the gas-to-dust ratio is between four and eight times that of the MW average.
Except for the general trend of increasing DIB strength with increasing dust column (Sect. 6.1),
there are no clear diagnostics, except those that probe the UV field conditions (i.e. those that are good indicators
of the ionisation balance), that characterise the DIB behaviour.
Comparison of the resulting column densities revealed that the most significant difference between different LMC lines of sight is the strength, (or hardness) of the UV field. Other factors like the depletion, the total to selective visual extinction, or the gas-to-dust ratio appear to be less crucial in the formation mechanisms that govern the DIB carrier presence, although they are likely to affect the balance between DIB carrier formation and destruction processes. In order to grasp more fully the effect of the UV field on the DIB carrier, and also the impact of other parameters it is important to study DIBs in a wide variety of interstellar environmental conditions. The most obvious step would be to examine diffuse lines of sight in the Small Magellanic Cloud and other galaxies in the Local Group.
Acknowledgements
The authors thank ESO for the allocated time on the VLT and their support in obtaining the observations. They also wish to thank Dan Welty for providing new results (on atomic line column densities) prior to publication, Karl Gordon for providing the LMC optical image, and Lister Staveley-Smith for the LMC H I line profiles. We are indebted to the referee for constructive comments that have improved the paper. N.L.J.C. is supported by NOVA and PE by VI-NWO (016.023.003). M.A.C. thanks the EPSRC for a research studentship. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France. We acknowledge the use of the 2MASS survey. The Australia Telescope Compact Array & Parkes telescope are part of the Australia Telescope which is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO.
Target | V | B-V | U-B | Source | J | H | K | Source | |||
(mag) | (mag) | (mag) | (mag) | (mag) | (mag) | ||||||
reddened stars: | |||||||||||
Sk -69 223 | 11.59 | 0.11 | -0.73 | 1 | 11.285 ![]() |
11.206 ![]() |
11.108 ![]() |
5 | |||
Sk -69 243 | 9.50 | 0.13 | -0.75 | 1 | 9.428 ![]() |
9.354 ![]() |
8.927 ![]() |
5 | |||
Sk -67 2 | 11.260 | 0.080 | -0.690 | 4 | 11.019 ![]() |
11.003 ![]() |
10.917 ![]() |
5 | |||
Sk -68 135 | 11.33 | 0.03 | -0.92 | 3 | 11.233 ![]() |
11.237 ![]() |
11.165 ![]() |
5 | |||
comparison stars: | |||||||||||
Sk -70 120 | 11.590 | -0.060 | -0.880 | 4 | 11.781 ![]() |
11.801 ![]() |
11.919 ![]() |
5 | |||
Sk -67 5 | 11.340 | -0.120 | -0.950 | 4 | 11.578 ![]() |
11.610 ![]() |
11.619 ![]() |
5 | |||
Sk -66 35 | 11.550 | -0.070 | -0.880 | 4 | 11.732 ![]() |
11.725 ![]() |
11.700 ![]() |
9 | |||
Sk -65 15 | 12.140 | -0.100 | -0.920 | 4 | 12.420 ![]() |
12.415 ![]() |
12.420 ![]() |
5 | |||
Sk -65 19 | 12.050 | -0.080 | -0.960 | 1 | 12.274 ![]() |
12.308 ![]() |
12.290 ![]() |
5 | |||
Sk -65 41 | 12.820 | -0.080 | -0.810 | 1 | 13.049 ![]() |
13.052 ![]() |
13.054 ![]() |
5 | |||
Sk -66 28 | 10.810 | -0.150 | - | 1 | 11.816 ![]() |
12.044 ![]() |
11.765 ![]() |
5 | |||
Sk -67 18 | 12.020 | -0.220 | -1.020 | 1 | 12.482 ![]() |
12.553 ![]() |
12.601 ![]() |
5 |
[1] Feitzinger & Isserstedt (1983); [2] Isserstedt (1975); [3] Appenzeller (1972); [4] Gordon et al. (2003); [5] 2MASS (Cutri et al. 2003).
Sk -69 223 | ||||||||||||
Na I D | Ca II | Ti II | H I | |||||||||
v | N | g | v | N | g | v | N | g | v | N | g | |
km s-1 | 1010 cm-2 | km s-1 | km s-1 | 1010 cm-2 | km s-1 | km s-1 | 1010 cm-2 | km s-1 | km s-1 | 1019 cm-2 | km s-1 | |
-13.4 | +2.57 | 5.4 | * | -14.1 | +41.5 | 6.4 | ||||||
-5.4 | +45.5 | 5.7 | * | -7.2 | +36.2 | 5.6 | -7.7 | +47.6 | 8.3 | |||
-2.8 | +20.3 | 6.2 | -1.0 | +8.39 | 3.7 | |||||||
4.0 | +41.4 | 8.9 | * | 3.1 | +34.0 | 7.2 | 4.6 | +56.7 | 7.9 | |||
9.9 | +38.2 | 5.1 | * | 10.2 | +36.1 | 5.1 | ||||||
25.0 | +3.72 | 5.7 | * | |||||||||
42.4 | +16.9 | 7.4 | 40.9 | +8.87 | 6.3 | |||||||
64.7 | +10.7 | 9.5 | 61.9 | +4.89 | 4.4 | |||||||
109.4 | +20.2 | 8.3 | ||||||||||
161.8 | +18.4 | 13.1 | ||||||||||
220.6 | +114.0 | 118.3 | 206.6 | +8.74 | 7.7 | |||||||
239.8 | +21.8 | 12.5 | 236.1 | +38.5 | 10.2 | |||||||
242.2 | +23.8 | 4.9 | 243.8 | +75.9 | 17.1 | |||||||
247.2 | +11.4 | 4.3 | 243.4 | +10.2 | 4.8 | 250.9 | +74.7 | 16.7 | 246.5 | +56.3 | 10.0 | |
256.2 | +17.5 | 6.0 | 257.2 | +27.1 | 6.0 | 258.0 | +31.2 | 4.6 | 258.0 | +104.0 | 10.0 | |
267.6 | +14.2 | 3.3 | 263.9 | +19.5 | 4.8 | |||||||
271.1 | +24.4 | 2.3 | ||||||||||
271.9 | +145.0 | 5.2 | 274.2 | +145. | 9.8 | 273.2 | +92.8 | 9.2 | ||||
275.9 | +117.0 | 12.2 | 276.1 | +226.0 | 10.8 | 280.3 | +35.9 | 7.2 | ||||
283.5 | +14.0 | 3.5 | 284.8 | +76.3 | 9.0 | 286.3 | +175.0 | 9.0 | 287.9 | +28.3 | 9.0 | |
298.5 | +8.12 | 4.6 | 298.2 | +49.1 | 7.9 | 297.2 | +24.0 | 18.2 | ||||
N | +389.0 | +456.0 | +584.0 | +380.0 | ||||||||
log(N) | 12.59 | 12.66 | 12.77 | 21.58 |
Sk -69 243 | |||||||||||||||
Na I D | Ca II | Ti II | K I | H I | |||||||||||
v | N | g | v | N | g | v | N | g | v | N | g | v | N | g | |
km s-1 | 1010 cm-2 | km s-1 | km s-1 | 1010 cm-2 | km s-1 | km s-1 | 1010 cm-2 | km s-1 | km s-1 | 1010 cm-2 | km s-1 | km s-1 | 1019 cm-2 | km s-1 | |
-6.5 | +36.3 | 14.7 | |||||||||||||
0.8 | +15.2 | 7.2 | * | 1.4 | +22.5 | 6.6 | 0.9 | +77.6 | 11.2 | ||||||
6.0 | +34.2 | 4.9 | * | 6.8 | +29.2 | 8.1 | 6.0 | -59.3 | 9.9 | ||||||
11.0 | +100.0 | 4.8 | * | 8.9 | +75.5 | 6.6 | |||||||||
14.5 | +5.92 | 4.3 | * | 16.7 | +11.6 | 5.7 | |||||||||
24.3 | +13.4 | 3.4 | |||||||||||||
48.8 | +43.8 | 27.1 | |||||||||||||
85.6 | +2.75 | 3.3 | |||||||||||||
104.5 | +21.2 | 4.6 | |||||||||||||
127.3 | +8.95 | 7.9 | |||||||||||||
184.7 | +50.4 | 32.4 | |||||||||||||
218.6 | +31.3 | 13.2 | |||||||||||||
228.6 | +20.5 | 11.8 | 228.0 | +36.9 | 8.2 | 226.5 | +37.5 | 37.5 | |||||||
240.2 | +6.80 | 4.8 | 236.7 | +25.0 | 3.8 | 233.8 | +62.7 | 34.4 | |||||||
247.8 | +12.5 | 3.4 | 243.1 | +27.4 | 7.4 | 244.2 | +12.5 | 9.3 | |||||||
249.6 | +28.6 | 2.2 | 250.4 | +66.4 | 5.9 | 249.1 | +107.0 | 24.5 | |||||||
252.5 | +173.0 | 5.0 | 256.6 | +23.8 | 4.2 | 254.2 | +56.9 | 10.1 | 251.7 | +8.85 | 4.8 | ||||
264.3 | +53.0 | 9.3 | 264.3 | +57.7 | 6.7 | 268.5 | +1.39 | 2.4 | |||||||
272.4 | +308.0 | 7.0 | 273.1 | +210.0 | 8.5 | 272.9 | +6.44 | 4.4 | 272.4 | +80.5 | 19.5 | ||||
274.1 | +19.5 | 3.3 | 275.7 | +280.0 | 18.6 | 274.8 | +157.0 | 32.6 | |||||||
278.7 | +43.7 | 7.8 | 281.6 | +47.3 | 5.4 | ||||||||||
292.3 | +34.0 | 6.4 | 289.7 | +110.0 | 6.6 | 285.1 | +115.0 | 15.7 | |||||||
295.7 | +59.7 | 9.1 | 295.8 | +36.1 | 6.0 | ||||||||||
303.2 | +15.9 | 4.0 | 303.8 | +26.1 | 7.2 | ||||||||||
N | +699.0 | +711.0 | +576.0 | +16.7 | +395.0 | ||||||||||
log(N) | 12.84 | 12.85 | 12.76 | 11.22 | 21.60 |
Sk -67 2 | |||||||||||||||||
Na I D | Na I UV | Ca II | Ti II | K I | H I | ||||||||||||
v | N | g | v | N | g | v | N | g | v | N | g | v | N | g | v | N | g |
km s-1 | 1010 cm-2 | km s-1 | km s-1 | 1010 cm-2 | km s-1 | km s-1 | 1010 cm-2 | km s-1 | km s-1 | 1010 cm-2 | km s-1 | km s-1 | 1010 cm-2 | km s-1 | km s-1 | 1019 cm-2 | km s-1 |
-44.7 | +6.46 | 5.7 | |||||||||||||||
-11.9 | +9.11 | 6.7 | -11.1 | +21.7 | 14.6 | ||||||||||||
-3.8 | +1.21 | 1.5 | -2.0 | +18.9 | 11.7 | -0.1 | +47.0 | 10.7 | |||||||||
-1.1 | +23.9 | 5.1 | -1.1 | +28.9 | 6.3 | ||||||||||||
7.2 | +50.9 | 8.6 | 3.1 | +17.6 | 4.7 | 7.0 | +27.8 | 11.5 | |||||||||
8.6 | +177.0 | 4.3 | 8.8 | +48.3 | 5.0 | ||||||||||||
10.3 | +21.2 | 1.4 | 42.1 | +3.44 | 13.2 | ||||||||||||
56.6 | +4.35 | 29.3 | |||||||||||||||
86.5 | +4.06 | 8.4 | |||||||||||||||
111.9 | +3.83 | 13.7 | |||||||||||||||
133.2 | +5.05 | 5.7 | |||||||||||||||
177.9 | +14.2 | 18.9 | |||||||||||||||
201.6 | +4.27 | 11.5 | |||||||||||||||
222.9 | +20.4 | 12.4 | 225.0 | +9.62 | 8.1 | ||||||||||||
227.6 | +9.26 | 7.5 | |||||||||||||||
247.3 | +15.7 | 1.7 | 240.3 | +37.6 | 12.0 | 239.7 | +13.2 | 7.6 | 238.3 | +40.2 | 32.6 | ||||||
249.2 | +37.5 | 1.6 | |||||||||||||||
251.2 | +95.0 | 2.0 | 250.1 | +391.0 | 7.4 | 250.8 | +1.22 | 2.7 | |||||||||
252.8 | +173.0 | 4.7 | 252.2 | +35.5 | 6.0 | 253.5 | +63.6 | 10.8 | 253.7 | +7.58 | 4.1 | 253.6 | +94.3 | 13.1 | |||
259.8 | +84.4 | 2.9 | |||||||||||||||
261.8 | +132.0 | 1.9 | 262.4 | +2730.0 | 4.6 | 261.7 | +71.4 | 9.3 | |||||||||
263.3 | +95.3 | 1.7 | 261.6 | +5.32 | 3.0 | 263.3 | +48.5 | 10.7 | |||||||||
265.0 | +29.9 | 1.8 | 263.6 | +34.1 | 3.9 | ||||||||||||
265.1 | +30.7 | 6.4 | 266.0 | +0.26 | 4.6 | 268.9 | +67.9 | 19.7 | |||||||||
271.7 | +7.30 | 1.2 | 273.6 | +20.7 | 4.8 | 272.7 | +8.24 | 5.1 | 267.2 | +1.07 | 3.8 | ||||||
275.9 | +8.55 | 5.6 | 278.9 | +3.59 | 4.3 | ||||||||||||
N | +710.0 | +3120.0 | +208.0 | +143.0 | +44.2 | +202.0 | |||||||||||
log(N) | 12.85 | 13.49 | 12.32 | 12.16 | 11.65 | 21.31 |
Sk -68 135 | |||||||||||||||||
Na I D | Na I UV | Ca II | Ti II | K I | H I | ||||||||||||
v | N | g | v | N | g | v | N | g | v | N | g | v | N | g | v | N | g |
km s-1 | 1010 cm-2 | km s-1 | km s-1 | 1010 cm-2 | km s-1 | km s-1 | 1010 cm-2 | km s-1 | km s-1 | 1010 cm-2 | km s-1 | km s-1 | 1010 cm-2 | km s-1 | km s-1 | 1019 cm-2 | km s-1 |
-2.0 | +9.92 | 3.1 | -2.8 | +32.3 | 11.2 | -1.1 | +41.4 | 10.6 | |||||||||
4.6 | +325.0 | 7.8 | 3.4 | +12.4 | 6.1 | ||||||||||||
11.0 | +375.0 | 5.3 | 10.8 | +67.4 | 5.8 | 8.7 | +41.1 | 8.1 | |||||||||
12.5 | +299.0 | 5.1 | |||||||||||||||
14.2 | +47.5 | 2.6 | 15.0 | +13.3 | 5.6 | ||||||||||||
49.7 | +13.7 | 15.5 | |||||||||||||||
65.4 | +4.27 | 3.3 | 64.8 | +25.3 | 6.7 | ||||||||||||
113.0 | +2.98 | 3.5 | |||||||||||||||
142.3 | +26.2 | 8.3 | |||||||||||||||
155.3 | +28.1 | 9.8 | 158.8 | +7.44 | 6.8 | ||||||||||||
181.0 | +16.5 | 10.6 | |||||||||||||||
194.2 | +15.7 | 11.4 | 200.5 | +14.8 | 12.1 | ||||||||||||
211.8 | +34.2 | 11.7 | 215.7 | +12.2 | 7.1 | ||||||||||||
230.4 | +30.9 | 12.8 | 236.3 | +22.5 | 15.4 | ||||||||||||
247.8 | +82.6 | 13.5 | 241.3 | +52.5 | 11.8 | ||||||||||||
256.3 | +289.0 | 5.8 | 253.7 | +51.9 | 2.6 | 254.1 | +65.6 | 4.9 | 257.6 | +99.8 | 14.5 | 255.1 | +6.30 | 4.8 | |||
258.9 | +14.9 | 1.6 | 260.2 | +522.0 | 6.5 | 259.1 | +5.28 | 4.5 | 258.6 | +198.0 | 15.9 | ||||||
262.2 | +480.0 | 4.2 | 261.0 | +150.0 | 9.1 | 263.0 | +16.2 | 4.7 | |||||||||
265.2 | +266.0 | 4.3 | 266.4 | +951.0 | 5.6 | 265.7 | +241.0 | 13.7 | |||||||||
266.6 | +117.0 | 9.9 | 267.5 | +4.26 | 4.3 | ||||||||||||
272.2 | +230.0 | 4.6 | 274.0 | +79.1 | 11.5 | 278.3 | +62.3 | 12.3 | 274.1 | +102.0 | 31.2 | ||||||
281.9 | +64.0 | 17.1 | |||||||||||||||
293.5 | +9.73 | 6.8 | 300.9 | +21.4 | 11.1 | ||||||||||||
N | +1180.0 | +1760.0 | +458.0 | +538.0 | +32.1 | +352.0 | |||||||||||
log(N) | 13.07 | 13.24 | 12.66 | 12.73 | 11.51 | 21.55 |
Sk -67 5 | ||||||||||||||
Na I | Ca II | Ti II | K I | H I | ||||||||||
v | N | g | v | N | g | v | N | g | v | N | g | v | N | g |
km s-1 | 1010 cm-2 | km s-1 | km s-1 | 1010 cm-2 | 1010 cm-2 | km s-1 | 1010 cm-2 | km s-1 | km s-1 | 1019 cm-2 | km s-1 | |||
-26.0 | +3.24 | 3.9 | ||||||||||||
-20.0 | +30.9 | 28.9 | ||||||||||||
-21.2 | +3.45 | 3.3 | ||||||||||||
-12.6 | +6.65 | 7.7 | ||||||||||||
-7.3 | +23.6 | 4.5 | ||||||||||||
-2.1 | +172.0 | 8.9 | -2.6 | +20.6 | 4.7 | 0.5 | +16.8 | 8.2 | ||||||
4.9 | +101.0 | 5.2 | 5.3 | +48.9 | 8.1 | 0.2 | +48.7 | 22.2 | ||||||
9.8 | +234.0 | 5.9 | 9.5 | +24.2 | 6.5 | |||||||||
14.2 | +4.97 | 3.6 | ||||||||||||
30.1 | +4.34 | 9.3 | ||||||||||||
64.5 | +51.6 | 12.1 | ||||||||||||
65.6 | +6.98 | 4.4 | ||||||||||||
131.8 | +9.09 | 7.4 | ||||||||||||
182.5 | +6.26 | 12.1 | ||||||||||||
234.8 | +7.09 | 4.2 | ||||||||||||
244.7 | +17.3 | 3.9 | 249.9 | +27.8 | 16.2 | |||||||||
256.6 | +4.94 | 3.5 | 255.7 | +12.0 | 4.8 | |||||||||
259.5 | +3.86 | 2.4 | 260.4 | +19.7 | 10.9 | |||||||||
261.8 | +3.36 | 3.0 | 263.1 | +49.7 | 5.6 | 262.2 | +66.8 | 17.1 | ||||||
266.3 | +33.9 | 6.1 | 268.5 | +68.1 | 7.2 | 266.6 | +1.48 | 4.2 | ||||||
272.5 | +57.9 | 5.6 | 272.7 | +92.5 | 10.1 | 273.5 | +8.81 | 4.5 | 273.1 | +66.6 | 8.7 | |||
273.7 | +125.0 | 4.6 | 278.3 | +112.0 | 8.9 | 280.6 | +1.89 | 3.1 | ||||||
280.4 | +81.0 | 5.3 | ||||||||||||
N | +310.0 | +179.0 | +200.0 | +12.0 | +161.0 | |||||||||
log(N) | 12.49 | 12.25 | 12.30 | 11.09 | 21.21 |
Sk -70 120 | |||||||||||
Na I | Ca II | Ti II | H I | ||||||||
v | N | g | v | N | g | v | N | g | v | N | g |
km s-1 | 1010 cm-2 | km s-1 | km s-1 | 1010 cm-2 | km s-1 | km s-1 | 1010 cm-2 | km s-1 | km s-1 | 1019 cm-2 | km s-1 |
-17.2 | +41.8 | 7.0 | -22.7 | +3.62 | 3.0 | ||||||
-6.0 | +67.6 | 6.7 | -5.9 | +482.0 | 8.0 | -5.4 | +59.6 | 6.8 | |||
1.2 | +15.2 | 7.6 | 4.3 | +93.7 | 7.8 | 2.3 | +76.6 | 30.2 | |||
8.8 | +40.0 | 6.3 | 9.4 | +76.2 | 6.6 | ||||||
19.6 | +5.65 | 5.8 | 20.6 | +51.3 | 8.2 | ||||||
52.3 | +154.0 | 7.4 | |||||||||
56.4 | +5.13 | 2.1 | |||||||||
64.0 | +96.4 | 8.1 | |||||||||
93.0 | +47.1 | 10.4 | |||||||||
106.6 | +4.52 | 3.3 | |||||||||
139.2 | +10.9 | 5.6 | |||||||||
177.2 | +2.78 | 4.7 | |||||||||
210.3 | +23.4 | 31.4 | |||||||||
210.9 | +1.54 | 3.5 | |||||||||
229.6 | +21.6 | 19.1 | |||||||||
239.8 | +6.69 | 7.4 | 244.7 | +8.10 | 9.9 | ||||||
254.7 | +25.1 | 15.0 | |||||||||
272.1 | +68.0 | 13.0 | 268.8 | +43.0 | 8.6 | 271.0 | +52.4 | 21.9 | |||
278.9 | +12.4 | 3.8 | 277.3 | +31.3 | 7.3 | ||||||
283.2 | +7.23 | 3.2 | |||||||||
288.6 | +6.78 | 4.0 | 289.7 | +6.22 | 4.8 | ||||||
291.8 | +62.2 | 10.3 | 292.9 | +130.0 | 13.0 | ||||||
301.2 | +27.6 | 5.7 | 303.5 | +37.2 | 16.2 | ||||||
306.1 | +22.7 | 4.6 | 308.2 | +170.0 | 12.7 | ||||||
310.5 | +44.1 | 6.2 | |||||||||
316.3 | +17.0 | 4.9 | |||||||||
323.4 | +39.6 | 6.8 | 319.1 | +54.5 | 10.6 | ||||||
332.0 | +3.25 | 5.3 | |||||||||
N | 389.0 | +429.0 | +104.0 | ||||||||
log(N) | 12.59 | 12.63 | 21.02 |