... Bernui[*]
On leave from Universidad Nacional de Ingeniería, Facultad de Ciencias, Apartado 31 - 139,  Lima 31, Peru.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... (EPASH)[*]
This result is independent of the three-dimensional geometry since all three isotropic geometries (i.e. spherical ${\cal S}^3$, Euclidean ${\cal R}^3$, and hyperbolic ${\cal H}^3$) possess spherical surfaces ${\cal S}^2$ as hypersurfaces.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... translation[*]
A picture of this FP can be seen, for instance, in Bernui et al. (1998), where it is denoted by ${\cal T}_4$.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...$\Gamma$[*]
Except when $\Gamma=\mbox{Identity}$, in which case ${\cal M}_k = \widetilde{\cal M}_k$ is a simply-connected manifold.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... rules[*]
i.e. physical properties that are common to the cosmic objects in a given catalog, such as luminosity threshold, redshift, etc.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... objects[*]
This situation corresponds to the monopole term (l = 0) in a multipole decomposition.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Copyright ESO 2006