Table 1: Parameters chosen in the different simulations and their results. These parameters are the dimensioning of the grid ( $n_r, n_\vartheta ,n_\varphi $), the kind of spacing (lc = logarithmically centered around the planet), the thermodynamics (iso = locally isothermal, rad = ideal gas plus radiation transport, rad+ = ideal gas, radiation transport and conservation of total energy for gas accreted onto planet), the gravitational smoothing radius ($q_{\rm g}$ = fraction of the Hill radius over that smoothing is applied), the accretion radius ( $q_{\rm acc}$ = fraction of the Roche lobe (respectively Hill radius) that mass is taken out of), the type of the initial model (G: starting with an existing gap), and the total number of orbits calculated ( $t_{\rm int}$). The results we give are the accretion rate onto the Planet ($\dot M$) in units of Jupiter masses per orbit, the mass contained in the Roche lobe ( $M_{\rm Roche}$), the maximum density and temperature in the Roche lobe ( $\rho _{\rm max}, T_{\rm max}$) and the migration time-scale that we determined ( $\tau _{\rm mig}$).
Name Grid EOS $q_{\rm g}$; $q_{\rm a}$ ini $t_{\rm max}$ $\dot M$ $M_{\rm Roche}$ $\rho_{\rm max}$ $T_{\rm max}$ $\tau _{\rm mig}$
CI $100\times20\times 1 $ iso 0.5 ; 0.5   300 - - $2.0\times10^{-14}$ 130 -
CDI $100\times20\times 200$ iso 0.5 ; 0.5 G 184 $1.5\times10^{-4}$ $2.2\times10^{-5}$ $3.0\times10^{-13}$ 130 $8.9\times10^{4}$
CD4I $100\times24\times 200$ lc iso 0.2 ; 0.2 G 81 $1.2\times10^{-4}$ $3.2\times10^{-5}$ $0.9\times10^{-11}$ 130 $1.0\times10^{5}$
CD $100\times20\times 200$ rad 0.5 ; 0.5 G 142 $6.0\times10^{-4}$ $6.5\times10^{-5}$ $1.0\times10^{-12}$ 150 $7.8\times10^{4}$
CDS $100\times20\times 200$ rad 0.2 ; 0.2 G 141 $3.0\times10^{-4}$ $1.3\times10^{-4}$ $2.0\times10^{-12}$ 200 $8.2\times10^{4}$
CD4 $100\times24\times 200$ lc rad 0.2 ; 0.2 G 75 $4.0\times10^{-4}$ $8.0\times10^{-5}$ $2.0\times10^{-11}$ 480 $8.0\times10^{4}$
CDNI $100\times20\times 200$ iso 0.5 ; 0 G 98 - $3.3\times10^{-4}$ $5.0\times10^{-11}$ 130 $8.3\times10^{4}$
CDN $100\times20\times 200$ rad 0.5 ; 0 G 44 - $7.5\times10^{-3}$ $6.0\times10^{-11}$ 310 $8.9\times10^{4}$
CDN4 $100\times24\times 200$ lc rad 0.2 ; 0 G 122 - $3.6\times10^{-4}$ $4.0\times10^{-10}$ 520 $1.2\times10^{5}$
DN $100\times20\times 200$ rad 0.5 ; 0   121 - $1.3\times10^{-3}$ $7.0\times10^{-11}$ 600 $6.6\times10^{4}$
DN4 $100\times24\times 200$ lc rad 0.2 ; 0   55 - $1.7\times10^{-2}$ $2.0\times10^{-9} $ 1150  
DR $100\times25\times 200$ rad+ 0.2 ; 0.2   121 $6.5\times10^{-4}$ $5.5\times10^{-4}$ $2.0\times10^{-11}$ 800 $1.0\times10^{5}$
DR4 $100\times25\times 200$ lc rad+ 0.1 ; 0.1   141 $3.5\times10^{-4}$ $4.5\times10^{-4}$ $4.5\times10^{-10}$ 1500 $1.2\times10^{5}$


Source LaTeX | All tables | In the text