Table 10: Abundance patterns and correlations between [X/Y] ratios and [Zn/Fe] for all clouds observed in our sample of 11 DLAs.
$\lbrack$X/Y] # clouds $^{\rm 1}$ Mean rms $\chi _{\nu }^2$ # clouds $^{\rm 2}$ $\tau $ (a) $P(\tau$) (b) a(c) b (d)
$\lbrack$Si/Fe] 79 0.390 0.183 18.10 22 0.686 0.000 $+0.241\pm 0.023$ $+0.534\pm 0.044$
$\lbrack$S/Fe] 34 0.376 0.251 9.85 18 0.757 0.000 $+0.060\pm 0.038$ $+0.961\pm 0.083$
$\lbrack$Si/Zn] 22 -0.033 0.173 11.60 22 -0.712 0.000 $+0.246\pm 0.025$ $-0.495\pm 0.041$
$\lbrack$S/Zn] 18 0.032 0.101 1.62 18 -0.343 0.047 $+0.058\pm 0.032$ $-0.059\pm 0.071$
$\lbrack$S/Si] 32 0.047 0.213 5.03 16 0.561 0.002 $-0.152\pm 0.037$ $+0.416\pm 0.079$
$\lbrack$N/Si] 36 -1.005 0.318 17.04 12 0.412 0.062 no correlation
$\lbrack$Mn/Fe] 29 -0.221 0.108 5.37 22 0.264 0.086 no correlation
$\lbrack$Cr/Fe] 28 0.130 0.105 2.89 24 0.097 0.508 no correlation
$\lbrack$Zn/Fe] 25 0.427 0.263 30.01          
Note. For the definition of a "cloud'', see Sect. 5.

$^{\rm 1}$ Total number of clouds in our sample of 11 DLAs with a measurement of [X/Y]. The corresponding logarithmic weighted mean,
logarithmic rms dispersion, and reduced $\chi ^2$ are given in columns (3), (4), and (5), respectively.
$^{\rm 2}$ Number of clouds in our sample of 11 DLAs with both a measurement of [X/Y] and [Zn/Fe]. Data plotted in Fig. 16.
(a) Kendall correlation factor of [X/Y] versus [Zn/Fe]. A positive value of $\tau $ corresponds to a correlation and a negative value to an
anti-correlation.
(b) Probability under the null hypothesis of zero correlation from the Kendall test. A value <5% indicates a significant correlation.
(c), (d) Zero point and slope, respectively, and their 1$\sigma $ uncertainties, of the linear least-square regression ${\rm [X/Y]} = a + b \times \rm [Zn/Fe]$,
computed by taking into account the errors on both [X/Y] and [Zn/Fe] data points.

Source LaTeX | All tables | In the text