... UK[*]
PPARC Advanced Fellow.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... China[*]
Outstanding Young Overseas Scholar.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... factor[*]
The "dielectric index'' $\mu({\vert{\vec g}\vert \over a})$ is more sensitive to perturbation along the external field $g(D_{\rm o})\hat{z}$ direction than perpendicular because $\vert{\vec g}+{\rm d}{\vec g}\vert=\left[(g_{D_{\rm o}}+{\rm d} g_z)^2
+({\rm d} g_x)^2 + ({\rm d} g_y)^2\right]^{1 \over 2}$ depends on the perturbation ${\rm d} g_z$ to first order, and ${\rm d} g_x$ and ${\rm d} g_y$ to second order.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... masses[*]
Dimensional analysis only cannot tell whether the dimensionless ${r_{\rm L} \over D_{\rm o}}$ scales like $\left( {m \over M}\right)^{n}$ or $\left({m' \over M}\right)^{n}$, where $m' ={m \over \mu}$ is the modified inertia (cf. Eq. (4)).
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Copyright ESO 2005