A&A 442, L35-L38 (2005)
DOI: 10.1051/0004-6361:200500183
T. Aiouaz1,2 - H. Peter1 - R. Keppens3
1 - Kiepenheuer Institut für Sonnenphysik (KIS)
Schöneckstraße 6, 79104 Freiburg, Germany
2 - Institut d'Astrophysique Spatiale (IAS) CNRS-Université Paris XI, 91405
Orsay Cedex, France
3 - FOM Institute for Plasma Physics Rijnhuizen Edisonbaan 14 3439 MN
Nieuwegein, Netherlands
Received 12 July 2005 / Accepted 11 September 2005
Abstract
We propose a forward modeling approach of coronal funnels to investigate
the outer layers of the solar atmosphere with respect to their thermodynamical
properties and resulting emission line spectra.
We investigate the plasma flow out of funnels with a new
2D MHD time dependent model including the solar atmosphere all the way from the
chromosphere to the corona.
The plasma in the funnel is treated in the single-fluid MHD approximation
including radiative losses, anisotropic thermal conduction, and two different
parameterized heating functions.
We obtain plasma properties (e.g. density, temperature and
flow speed) within the funnel for each heating function.
From the results of the MHD calculation we derive spectral profiles of
a low corona emission line (Ne VIII, 770 Å).
This allows us e.g. to study the Doppler shifts
across the funnel.
These results indicate a systematic variation of the Doppler shifts in
lines formed in the low corona depending on the heating function used.
The line shift above the magnetic field concentration in the network is
stronger than in the inter-network in both cases.
However, for one of the heating functions, the maximum blue-shift (outflow)
is not to be found in the very center of the funnel but in the
vicinity of the center.
This is not the case of the second heating function where the maximum is
well aligned with the centre of the funnel.
This model directly relates for the first time the form of the heating
function to the thermodynamic and spectral properties of the plasma
in a funnel.
Key words: Sun - magnetohydrodynamics (MHD) - synthetic spectra - funnel
In our case, the same analytical definition was used to prescribe the
initial condition for the magnetic field.
However, the region where plasma
is high,
i.e. where the magnetic field is weak or/and where the plasma pressure is
strong, are taken into account, resulting in a dynamic, time dependent, MHD
model.
![]() |
Figure 1:
This figure shows the steady state solution at
![]() ![]() |
Open with DEXTER |
Based on this definition of the magnetic field, we define for the
coronal funnel the cross-section
where
is the magnetic field strength at the upper end of the funnel.
The density,
,
and the thermal pressure,
,
are initially
defined using the hydrostatic pressure balance after that the temperature is
prescribed as an hyperbolic tangent.
The velocity is set equal to zero everywhere in the domain.
At the lower boundary we keep the normal gradient of density and of the total energy e constant. The momentum is set to zero at the bottom boundary. Thus the low chromosphere artificially acts as a reflective wall for downward propagating waves. In order to keep the funnel structure during the simulation the magnetic field is fixed at the lower boundary.
Since there may be out-going waves that should leave the domain properly without generating spurious reflections at the upper boundary, the top boundary is open. This means that the density, momentum and magnetic field are linearly extrapolated. The total energy at the top is set such that the gradient of the temperature at the top is zero to avoid downward heat flux into the domain. The left and right boundaries are periodic.
The first heating term we implement
varies with height z(vertical direction) only decreasing exponentially in the corona.
This form of the heating function is often used in 1D studies of coronal
loops (e.g. Serio et al. 1981) and the solar wind (e.g. Hansteen & Leer 1995).
As the density roughly decreases exponentially this function describes a
heating process being approximately a power law of the particle density.
The second heating term
HB2(x,z) we implement is proportional to the
square of the magnetic field strength, and thus varies in the horizontal
x and vertical z direction.
It is motivated by recent studies of coronal active regions by
Gudiksen & Nordlund (2002).
They show that for braiding of magnetic flux and
subsequent dissipation of currents (on average) the heating is roughly
proportional to B2.
The last term of the energy sources and sinks in Eq. (2), in
brackets, represents the Newton's law of cooling states,
,
where
is the density at t=0 at the bottom boundary,
T(0) is the temperature at t=0, K and
are adjustable
constants which controls the area at the bottom boundary where
is not negligible (K=3,
).
This term prevents the chromosphere to completely disappear from the
computational domain in case of too high heating.
This ensures the numerical stability of the calculation by preserving
chromospheric temperature at the bottom boundary.
Newton cooling acts only on the few first cells of the computational
domain due to the high value of
and to the exponential decrease of
the density with z (height).
Firstly we can see from Fig. 1 that the TR is not at the same height across the funnel in both cases. Furthermore the temperature in the corona is lower in the centre of the funnel than the surrounding region at the same height. A closer look at the central region, where the TR descends downward in the solar atmosphere, shows that the edges of this central area are the deepest position of the TR.
In the center of the funnel the heat from the corona is conducted deep in the "cold'' atmosphere, conduction allowed by the open magnetic field lines. This shows the crucial role played by the magnetic field topology. The conduction moves the TR toward higher densities until it reaches a balance with radiative cooling which is proportional to the square of the density. At the closed magnetic field areas, the topology does not allow any thermal connection between the chromosphere and the corona, and thus does not allow any heat transfer between the closed magnetic field areas and the corona, maintaining then the TR higher up in the atmosphere.
Furthermore we obtain a plasma flow which is stronger toward the center of the funnel. This last characteristic of the funnel is also observed in the solar corona when looking at coronal lines above quiet Sun areas. The internetwork region shows on average less outflow than the network where the magnetic field is concentrated (Aiouaz et al. 2005).
Hammer (1982) established that the variation of the thermal pressure, cause of the velocity variation along the magnetic field lines, is related to the heating. He argues that with increasing heating at the base of the TR the atmosphere is capable of radiating away more energy. Since the radiative losses are coupled to the density and thus to the thermal pressure (at chromospheric temperature), the pressure increases to radiate away the supplementary energy.
However, to be able to compare this result with observations of the Doppler shifts in the upper transition region or low corona, we must find out how a spectrometer would see the coronal funnel and his thermodynamical properties. To answer this question, we developed a method to create synthetic spectra which correspond to what a spectrometer would see from such a funnel. The spectral code is described in the next section.
The spectral code uses as input, the values of density ,
temperature
T, and the plasma flow vz along the line of sight z, values
provided by the 2D MHD quasi steady state solutions.
The ion emissivity,
,
is computed at
each grid point of the computational domain using the CHIANTI database
(Young et al. 2003).
Once the ion emissivities are calculated (lower panels in
Fig. 2), a normalized gaussian
profile is associated at each grid point to calculate emission profiles
,
defined as
![]() |
(5) |
![]() |
Figure 2:
The upper panels show the line shifts of Ne VIII (770.4
Å) line across the funnel calculated for the resulting synthetic spectra
integrated along the line of sight (z-direction). The lower panels show
the corresponding emissivity,
![]() ![]() |
Open with DEXTER |
Firstly, the absolute values of the plasma flow (around 10 km s-1) are in
agreement with the usual values observed for the quiet Sun with the same
emission line (see upper panels in Fig. 2).
Secondly, the line shift above the magnetic field concentration in the network
is stronger than in the inter-network in both cases.
This result shows that the plasma flow computed and discussed in
Sect. 3, where the strongest flows are observed toward the
centre, would be observed from a spectrometer looking at a low coronal line.
Finally, the upper panels in Fig. 2 show that for
(left panel), we find a dip in Doppler shift in the very
center of the funnel. So the largest shifts are not to be found in the very
center but in the vicinity of the center.
While for
HB2(x,z) (right panel) this is not the case, the maximum of
Doppler shift is well centered.
In the case of
,
since the amount of heating is constant in
the horizontal direction (decreases only vertically) then the heating is
higher at the base of the TR for the edges of the central part than for the
very center.
While in the second case
H=HB2(x,z), the heating flux decrease
vertically and horizontally. So that the win of pressure at the base
of the TR for the edges of the central part due to the shift downward in the
z-axis is balanced by a loss due to the shift in the x-axis.
This argument explains why the pressure gradient and thus the velocity is
stronger at the edges of the central part in the case of exponential
decreasing heat (
)
and not in the case
HB2(x,z)where the heating input is proportional to B2.
This property is of crucial importance because it directly links the form of
the heating function and an observable of the plasma in the funnel, namely the
velocity in the upper transition region/or low corona.
This last point shows that the Doppler shift in the low corona across
coronal funnels is a good candidate for the investigation of the coronal
heating mechanism.