Table 3: Input and derived parameters obtained from a $\chi ^2$ minimization procedure applied to several data sets: all data (BMAD), near-IR V2 and closure phases (BMIRCP), closure phases alone (BMCP), and near-IR V2alone (BMIR). There is no uncertainty associated to $\beta $ and $T_{\rm p}$ because they define two test models based on theoretical limits for the gravity darkening (see text for details). Selected dependent parameters for the best models are also listed.
Fixed input parameters BMAD BMIRCP BMCP BMIR
$v_{\rm eq} \sin i $ ( $\!~{\rm km~s^{-1}}$) 227 227 227 227
M ( $\!~{M}_{\odot}$) 1.8 1.8 1.8 1.8
i (deg) - - - $50\hbox{$^\circ$ }$
( $\beta,T_{\rm p}$ (K)) - - - (0.25, 8500)

Results of the $\chi ^2$ analyses
BMAD BMIRCP BMCP BMIR

$\chi^2_{\rm min}/{\rm d.o.f.}$
7.3 3.2 1.5 0.50
( $\beta,T_{\rm p}$ (K))a (0.25, 8500) (0.25, 8500) (0.25, 8500) -
i (deg) $55\hbox{$^\circ$ }\pm 8\hbox{$^\circ$ }$ $55\hbox{$^\circ$ }\pm 14\hbox{$^\circ$ }$ $50\hbox{$^\circ$ }\pm 12\hbox{$^\circ$ }$ -
$2a=\oslash_{\rm eq}$ (mas) $3.83 \pm 0.06$ $3.88 \pm 0.08$ $3.88 \pm 0.03$ $3.44 \pm 0.05$
$R_{\rm eq}\ {}^b$ ( $~{R}_{\odot}$) $2.117\pm0.035$ $2.145\pm0.045$ $2.145\pm0.020$ $1.902\pm0.029$
$\eta $ (deg) $92\hbox{$^\circ$ }\pm 6 \hbox{$^\circ$ }$ $62\hbox{$^\circ$ }\pm 17\hbox{$^\circ$ }$ $95\hbox{$^\circ$ }\pm 23 \hbox{$^\circ$ }$ $113\hbox{$^\circ$ }\pm 12 \hbox{$^\circ$ }$

Dependent parameters
BMAD BMIRCP BMCP BMIR
$T_{\rm eq}$ (K) 6509 6483 6171 6453
$v_{\rm eq}$ ( $~{\rm km~s^{-1}}$) 277 277 296 296
$v_{\rm eq}/v_{\rm crit}(\%)$ 76% 76% 80% 77%
$f_{\rm rot}$ (cycles/day) 2.585 2.552 2.729 3.077
$2b=\oslash_{\rm p}^{\rm max}$ (mas) 3.29 3.33 3.32 2.99
$a/b=\oslash_{\rm eq}/\oslash_{\rm p}^{\rm max}$ 1.164 1.165 1.169 1.149
$R_{\rm eq}/R_{\rm p}$ 1.237 1.240 1.275 1.243
Theoretical limit preferred compared to ( $\beta,T_{\rm p}$ (K)) = (0.08, 8000).
From $\oslash _{\rm eq}$ and Hipparcos distance ( $d=5.143\pm0.025$ pc).


Source LaTeX | All tables | In the text