A&A 440, 743-750 (2005)
DOI: 10.1051/0004-6361:20042617
P. Benaglia1,2, -
G. E. Romero1,2,
-
B. Koribalski3 -
A. M. T. Pollock4
1 - Instituto Argentino de Radioastronomía,
C.C.5, (1894) Villa Elisa, Buenos Aires, Argentina
2 -
Facultad de Cs. Astronómicas y Geofísicas, UNLP, Paseo del Bosque
s/n, (1900) La Plata, Argentina
3 -
Australia Telescope National Facility, CSIRO, PO Box 76, Epping,
NSW 1710, Australia
4 -
XMM-Newton Science Operations Centre, European Space Astronomy Centre,
Apartado 50727, 28080 Madrid, Spain
Received 27 December 2004 / Accepted 6 June 2005
Abstract
We present results of high-resolution radio continuum
observations towards the binary star WR 21a (Wack 2134) obtained
with the Australia Telescope Compact Array (ATCA) at 4.8 and
8.64 GHz. We detected the system at 4.8 GHz (6 cm) with a flux
density of
mJy and set an upper limit of 0.3 mJy at
8.64 GHz (3 cm). The derived spectral index of
(
)
suggests the presence of
non-thermal emission, probably originating in a colliding-wind
region. A second, unrelated radio source was detected
north of WR 21a at (RA, Dec)
,
with flux densities of 0.36
and 0.55 mJy at 4.8 and 8.64 GHz, respectively, resulting in
.
H I observations in the area are dominated
by absorption against the prominent H II region RCW 49.
Analysis of a complete set of archived X-ray observations of
WR 21a confirms its strong variability but throws into doubt
previous suggestions by Reig (1999) of a period of years for the
system. Finally, we comment on the association with the
nearby EGRET source 3EG J1027-5817.
Key words: stars: early-type - stars: individual: WR 21a - stars: winds, outflows - radio continuum: stars - ISM: bubbles - gamma-rays: observations
Massive O and Wolf-Rayet (WR) stars lose large amounts of mass through dense, energetic winds. These winds can interact with the surrounding interstellar medium (ISM) to create cavities in the H I distribution (e.g. Benaglia & Cappa 1999) or produce strong shock fronts that, in principle, can accelerate charged particles up to relativistic energies (e.g. Völk & Forman 1982). In fact, non-thermal radio emission has been detected in a number of early-type stars, indicating the presence of populations of locally accelerated electrons (e.g. Chapman et al. 1999; Benaglia et al. 2001b; Benaglia & Koribalski 2004).
Particle acceleration mediated by strong shocks could be taking place in a number of different regions of a massive stellar system such as the outer boundary of the interaction between the wind and the ISM (e.g. Cassé & Paul 1980), the base of the wind, where line-driven instabilities are thought to drive strong shocks (e.g. White 1985), or, in massive binary systems, the colliding-wind region (CWR, e.g. Eichler & Usov 1993). In addition to the expected non-thermal radio emission from relativistic electrons, high-energy radiation could be produced through, for example, inverse-Compton scattering of UV stellar photons or hadronic interactions from shock-accelerated ions and ambient material (e.g. Pollock 1987; White & Chen 1992; Romero et al. 1999; Benaglia et al. 2001a; Mücke & Pohl 2002; Benaglia & Romero 2003).
Only a small number of non-thermal radio WR binaries have been
identified so far (see for instance Dougherty et al. 2003) and,
even then, the connection between the radio and X-ray properties
of these systems is far from clear. The archetype system WR 140 is
bright in both regimes with a well-defined radio light curve that
shares the 7.94-year period of the optical radial-velocity orbit.
The X-ray light curve is not so well determined but shows strong
variability consistent with the same period. WR 140, however, is
the exception. The radio brightest star, WR 146, is a relatively
faint X-ray source whereas WR 147 seems to be intermediate in both
regimes.
Sharing some characteristics with these systems, the star WR 21a [(
,
],
is particularly interesting for various reasons. In the past, it
coincided within the fairly large positional uncertainties with
the COS B source 2CG 284-00 (Goldwurm et al. 1987). More recently,
the unidentified EGRET gamma-ray source 3EG J1027-5817 was detected
southwest of WR 21a (Hartman et al. 1999), being the star
30 arcmin apart from the center of the gamma-ray source. The 95%
probability radius of the EGRET source is about 0.3
.
Caraveo et al. (1989) established that WR 21a is associated with the X-ray source 1E 1024.0-5732, and reported X-ray pulses. Its X-ray emission could be explained if the star is part of a binary system with either a compact companion forming a high-mass X-ray binary (Caraveo et al. 1989) or another massive, early-type star, with a CWR (Reig 1999). According to its stellar spectrum, it was early classified as an O5 star (Caraveo et al. 1989), and as a likely binary (WN5-6+O3f), at a maximum distance of 3 kpc (Reig 1999).
With the current investigation we aim at determining the radio properties of the star and its surroundings. Specifically, using interferometric observations at 3 and 6 cm, we looked for non-thermal radiation that might be interpreted as evidence for sites where electrons are being accelerated in colliding winds or terminal shocks. By means of low-resolution 21 cm-line observations, we have also studied the distribution of neutral hydrogen around the star. The detection of non-thermal emission coincident with the stellar position would help in the identification of the system components. Analysis of all available X-ray data of WR 21a reveals a variability history that sheds fresh light on the nature of the binary. Finally, we discuss the possibility of a physical link between the stellar system and the nearby EGRET source, which can help to unveil the nature of the latter.
The contents of the paper are as follows: Sect. 2 reviews the main sources detected in this region of the sky that are relevant for the present study. Section 3 describes the observations carried out and the data reduction; Sect. 4 outlines the new observational results, whereas Sect. 5 presents the corresponding analysis. In Sect. 6 we discuss the X-ray data. Section 7 contains a comment on the possibility of a physical association between the star and the EGRET source 3EG J1027-5817. Section 8 closes with the summary.
The region of the Galactic plane towards
has been widely observed, from radio to gamma rays.
The optical images of Rodgers et al. (1960) revealed various
H II complexes, of which RCW 49 is the most prominent. The
COS B satellite discovered the unidentified
-ray source
2CG 284-00 (Bignami & Hermsen 1983; Caraveo 1983). The zone was
then investigated by means of Einstein X-ray measurements in which
were detected emission from RCW 49 and a point source named 1E 1024.0-5732 (Goldwurm et al. 1987). The point source was tentatively linked to
WR 21a (Hertz & Grindlay 1984), an emission-line star with
(Wackerling 1969), also called Th35-42 and Wack 2134.
Caraveo et al. (1989) gathered enough evidence definitely to
associate the X-ray source with the star. They took optical
stellar spectra with the 3.6-m telescope at La Silla, classified
the star as O5, set an upper limit for the stellar distance of 3 kpc, and studied the Einstein X-ray emission, reporting an X-ray
periodicity of 60 ms. They explained the X-ray behaviour as
a binary with a compact companion, likely an accreting neutron
star (NS). Dieters et al. (1990) looked for optical pulsations
with the Tasmania 1-m telescope. They set an upper limit around
19.7 mag for any optical pulsation.
Mereghetti et al. (1994) observed the region with the ROSAT PSPC instrument, finding no pulsations, and obtained a further spectrum with the CTIO 1.6 m telescope, revising the spectral classification to WN6. Based on the small equivalent widths of the emission lines, they suggested that the object could be a binary with an O star, rather than a compact companion, in which case the X-rays could come from colliding winds, in common with other Wolf-Rayet binary systems.
Table 1: Adopted stellar parameters for the binary system WR 21a.
In 1999, Reig presented RXTE data and a new spectrum taken with the 1.9 m telescope at SAAO. He stated that the lack of pulsations and the relatively soft and low X-ray emission seem to exclude the presence of a NS as responsible for the observed X-rays. Claiming that the spectrum shows features of both WR and O stars, he suggested that the system is formed by a WN6 and a possibly supergiant O3 companion, favoring the hypothesis of the colliding-wind binary (CWB). Roberts et al. (2001) observed the region towards WR 21a with ASCA, and interpreted the hard X-ray emission detected as produced by shocks from colliding winds in the stellar system. Very recently, Niemela et al.'s (2005) optical radial measurements have finally confirmed that the system is formed by two massive stars.
The distance d to WR 21a is not well established. We shall adopt d = 3 kpc throughout this paper, a value that seems to be consistent, as we will see, with all current observations.
Table 1 lists the adopted parameters that make up the Wack
2134/WR 21a binary system. Very few of the properties have so
far been measured, so we have to assume parameters from similar
stars or theoretical predictions.
The stellar luminosity, effective temperature, and stellar mass of
the WR component were estimated as an average of the same
variables given by Hamann et al. (1995) for WN6 stars. The WR mean
molecular weight of the ions
was assumed the same as in
Leitherer et al. (1997) for a WN6 star. The WR wind terminal
velocity is taken as a mean value between data listed by Hamman et al. (1995) and by Prinja et al. (1990) for WN6 stars. The WR
predicted mass loss rate (
)
is taken as the lowest value
tabulated for WN6 stars by Nugis & Lamers (2000), in their
compilation of observable
,
and it can be considered a
lower limit. The O3 (I) mass was taken as the spectroscopic mass
from the tables of Vacca et al. (1996), and its terminal velocity
from the averaged values listed by Prinja et al. (1990). We
assumed
for the O star because of its evolved stage. A
predicted mass loss rate was estimated using the recipe derived by
Vink et al. (2000) (astro.ic.ac.uk/
jvink/). The expected
(WR+Of) mass-loss rate would imply a 6-cm flux density of 0.24 mJy
at 3 kpc, if thermal emission from ionized winds in both stars is
assumed.
Close to WR 21a there are two interesting sources: the H II region RCW 49, and the gamma-ray source 3EG J1027-5817. They are discussed below.
RCW 49 is a southern H II region, located at
,
and extended over an area of
.
Values for its distance range between 2.3
and 7.9 kpc (Manchester et al. 1970; Moffat et al. 1991;
Brand &
Blitz 1993, etc.). H I spectra towards RCW 49 taken by Goss
et al. (1972) show prominent H I absorption from about -20 to +5 km s-1 (see also Figs. 2 and 3). Whiteoak & Uchida
(1997) have imaged RCW 49 at radio continuum with MOST at 0.843 GHz, and the central region using ATCA at 1.38 and 2.38 GHz,
attaining an angular resolution of 7 arcsec. They found two
shells, and ascribe the formation of the northern one to the
Westerlund 2 cluster containing the binary star WR 20a, and the
southern one to the star WR 20b (see their Fig. 2d). Recent
infrared images of RCW 49 obtained with the Spitzer Space
Telescope (Churchwell et al. 2004) show the intricate filamentary
structure of the nebula in the inner 5 arcmin shaped by stellar
winds and radiation.
After the analysis of the EGRET data, Hartman et al. (1999) were
the first to point at the proximity between the gamma-ray source
3EG J1027-5817 and the X-ray source 1E 1024.0-5732, associated with WR 21a (see
Fig. 3). The averaged measured flux at E>100 MeV is
photons cm-2 s-1. The
source is constant within errors on timescales of months
(variability index I = 1.6, see Torres et al. 2001) and with a
photon spectral index
(d
). The more recent variability analysis by Nolan et al. (2003), who calculated a likelihood function for the flux of
each source in each observation, also suggests that this source is
not variable on short, monthly timescales.
In order to search for non-thermal radio emission in the direction of WR 21a we have carried out interferometric radio continuum observations at high angular resolution ( 1'' - 2''). These were complemented with single-dish H I-line observations to map the distribution of neutral material in the neighbourhood and study its kinematic behaviour.
Radio continuum data were obtained in September 2001 with the
Australia Telescope Compact Array in the 6D array, observing
simultaneously at 3 and 6 cm, or 8.64 and 4.8 GHz, respectively.
The total bandwidth used was 128 MHz. The primary calibrator was
PKS 1934-638, with flux densities of 5.83 and 2.84 Jy, at 4.8 and
8.64 GHz. WR 21a was tracked 12 h - full synthesis - to gain
maximum uv coverage, interleaving with observations of the phase
calibrator 1039-47. The theoretical rms noise after 9 h
on source is 0.03 mJy at both frequencies, taking all baselines into
account.
The data were reduced and analyzed with MIRIAD routines. The
images built using "robust'' weighting showed the best signal to
noise ratio, and minimized sidelobes. The diffuse emission from
extended sources was removed by taking out the visibilities
corresponding to the shortest baselines. The resulting beams were
at 3 cm, and
at
6 cm.
The rms noise of the final maps is 0.1 mJy beam-1 at 3 cm
and 0.06 mJy beam-1 at 6 cm. The difference between the
theoretical and the observed rms noise is mainly due to flagging
of bad data - specially at 3 cm - as well as short baselines
contributing with confusing emission from extended sources both in
and outside the main beam.
The observations were set to optimize the detection of point-like features. Maps at two frequencies would allow the determination of spectral indices.
![]() |
Figure 1:
Left panel: ATCA-3 cm radio continuum image towards
WR 21a. The optical position of the star is marked with a cross.
The contour levels are -0.20, 0.20 (![]() ![]() ![]() ![]() |
Open with DEXTER |
The 21 cm-line data were obtained with a 30 m-single dish
radiotelescope at the Instituto Argentino de Radioastronomía
(IAR, Villa Elisa, Argentina) in June 2000. The observations were
done in total power mode, covering a total field of
,
in Galactic coordinates with a cell size of
.
The HPBW at 1420 MHz is 30
.
The receiver's
system temperature was
35 K. The velocity coverage was
(-450, +450) km s-1; the 1008 channel autocorrelator
allows a maximum velocity resolution of 1.05 km s-1. The rms
noise of the brightness-temperature (
)
of a single spectral
point is
0.1 K. The
scale was calibrated with the
standard region S9 (Morras & Cappa 1995). A series of
(l, b)-
maps were built every 1.05 km s-1 to
proceed with the analytical stage.
The ATCA images at 3 and 6 cm are shown in Fig. 1. A point source
positionally coincident with WR 21a is visible at 6 cm, at
.
A flux density
mJy was derived using IMFIT
after a gaussian fit (see Table 2). The rms noise in the 3 cm image
is 0.1 mJy beam-1. No radio source is detected at the stellar
position above 3 rms. This non-detection imposes an upper limit for
the spectral index of
(
). The
deviation from purely thermal emission, characterized by
,
indicates the presence of a non-thermal contribution.
Table 2: Radio continuum results.
In a similar way as in Benaglia & Koribalski (2004), we derive a
mass loss rate of WR 21a, from the flux density at 6 cm. In a
first approximation, the mean number of electrons per ion (), and the rms ionic charge (Z) were taken equal to
unity. The gas temperature is computed from the stellar effective
temperature (see Table 1) as
.
The Gaunt factor
results in 5.6. At the adopted distance of 3 kpc, this would
imply a radio-derived mass loss rate for the WR star of
yr-1, where
f is the fraction of thermal to total radio emission. From
the relation between the flux density values measured with ATCA at 3 and 6 cm we know that at 6 cm there is a non-thermal
contribution to the emission. Thus, in deriving a mass loss rate
from the flux density at 6 cm, the result with f = 1 is an upper
limit.
A second source, called S2, is detected 10
away from WR 21a, at
both frequencies. The measured fluxes are 0.55 mJy at 3 cm, and 0.36 mJy at 6 cm. The corresponding spectral index of
points to an ultracompact H II region or the
thermal wind of another, as yet unidentified, early-type star on
the field of WR 21a. Table 2 lists the position and flux density
of the two sources detected.
Studies of neutral hydrogen were performed to look for evidences
of gas features such as shells, filaments, bubbles, etc., that
could be physically related to the object under the present study.
The H I gas kinematics in the line-of-sight to a Galactic
source can be used to constrain its distance (e.g. Koribalski et al. 1995) using the Galactic rotation curve (e.g. Fich et al. 1989)
and the Galactic velocity field (Brand & Blitz 1993). Here we
searched for the signatures of an interstellar H I bubble,
created by the action of the stellar winds of WR 21a. Because of
the large angular size of the IAR telescope beam (HPBW = 30 arcmin; see Figs. 2 and 3) and the proximity of WR 21a to the
extended H II region RCW 49, which has a total radio
continuum flux of 210 Jy at 843 MHz (Whiteoak & Uchida
1997), H I spectra in this direction are completely
dominated by H I absorption against RCW 49 (Goss et al.
1972; McClure-Griffiths et al. 2001). We also investigated the
high-resolution (130 arcsec) H I data cubes from the
Southern Galactic Plane Survey (SGPS; McClure-Griffiths et al.
2001) in the region of RCW 49 and WR 21a. Unfortunately, the
region around RCW 49, including the H I line emission at
the position of WR 21a, suffers from artifacts caused by the
strong radio continuum emission from RCW49 and potential H
I structures associated with WR 21a cannot be distinguished.
Figure 2 displays the H I brightness temperature maps each 4 km s-1 built from the IAR data.
If we were able to see an H I bubble around WR 21a, its size would give us some information about the energetics of the stellar wind and its velocity would give us an estimate of its kinematic distance using the Galactic rotation curve and velocity field. These issues are explored in the following section.
![]() |
Figure 2: H I-brightness temperature distribution of the Galactic emission as measured with the IAR telescope ( HPBW = 30 arcmin) over a velocity range from -24 to +12 km s-1, in steps of 4 km s-1. The position of WR 21a is marked with a white star. The contour levels indicate H I brightness temperatures in steps of 5 Kelvin. |
Open with DEXTER |
![]() |
Figure 3: Neutral-hydrogen column density integrated over velocities from -21 to -14 km s-1. The contour levels indicate H I brightness temperatures in steps of 4 Kelvin. The IAR telescope beam is displayed in the bottom left corner. The position of WR 21a is marked with a black star, and the black contours represent the 99, 95 and 50% probability contours for the location of the gamma-ray source 3EG J1027-5817. |
Open with DEXTER |
The derivation of gas kinematic distances is difficult for this
particular region of the Galactic plane. The line of sight goes
tangential to the Carina arm at this Galactic longitude, and
velocity crowding becomes very important. Brand & Blitz (1993)
showed that the measured velocities deviate strongly from Galactic
rotation: gas in the velocity range from -20 to -10 km s-1can be located at distances between 2 and 6 kpc for
,
where both WR 21a and RCW 49 are likely to be
located.
By means of CO observations, Grabelsky et al. (1987) studied
molecular gas associated with the Carina arm. They interpreted the
velocity-longitude behaviour of the gas in terms of material at
different heliocentric distances (see their Fig. 5), separating
local clouds from Carina arm gas. According to their results it is
possible to determine that toward
gas showing
velocities around
-15 km s-1 belongs to the Carina
arm and is located at about 3 kpc, i.e., the distance of WR 21a.
In Fig. 2 it can be appreciated that the gas distribution changes
at about
to -12 km s-1. We are going to focus
on gas with
= -20 to -12 km s-1 because,
according to the CO results, its kinematical distance is
compatible with that of the target star. The H I column
density at the mentioned velocity interval is presented in Fig. 3.
From the plot of Grabelsky et al. (1987), CO gas with velocities
between -20 and -10 km s-1 is located between 2 and
3.5 kpc. This fact helps to constrain an approximate error in the
H I distance of
1 kpc. At larger velocities,
Grabelsky et al. claimed that gas related to RCW 49 shows
velocities of -5 km s-1, and placed it at 4 kpc. A distance
of
5 kpc can be derived, for Carina gas with velocities near
0 km s-1. If the H I follows the motions proposed by
Grabelsky et al., it is reasonable to suggest that gas with a
velocity of -14 km s-1 lies at 3 kpc.
Figure 3 shows the presence of gas at a distance compatible with
that of the stellar system. Due to the strong
continuum source RCW 49, part of the HI gas is not emitting but
absorbing. At a distance of 3 kpc, the visible neutral gas
coincident with the position of the EGRET source would sum up
about 1500 ,
which can be considered as a lower limit for
the masses of clouds at the distance we are interested on.
By means of Antenna I at IAR (
)
we also
measured the H125
(3326.9880 MHz) radio recombination line
(RRL) towards
.
Since RRLs
are typically produced by H II regions, the detected
emission (see Fig. 4) is likely to be mostly from RCW 49. We
measure a center velocity of
km s-1,
similar to those found at other RRLs in RCW 49 (e.g. Caswell &
Haynes 1987).
![]() |
Figure 4:
3.3 GHz radio recombination line H125![]() ![]() |
Open with DEXTER |
The kinetic energy needed to form a typical bubble around WR 21a
can be computed as
erg if we assume a shell mass of
and an expansion velocity of
km s-1, which are typical parameters of neutral shells
detected around massive Of stars (Cappa & Benaglia 1998; Benaglia
& Cappa 1999).
The stellar wind luminosity can be expressed as
.
Using the values of
and
given in Table 1, we find
erg s-1, and
erg s-1.
Finally, a wind mechanical energy
erg per Myr is obtained if both stars are
considered, and
erg per Myr for
only WN6. It can be seen that the energy deposited by the wind is
much larger than the energy needed to create a typical bubble.
![]() |
Figure 5: The history of WR 21a's 1-2 keV X-ray luminosity since its discovery in 1979 with the Einstein Observatory, through measurements in the early 1990s with ROSAT to the RXTE and ASCA measurements of 1997 and 1998. WR 21a is bright and the luminosity errors are usually smaller than the plotting symbols. The luminosities were calculated assuming the spectrum did not change shape and the range 1-2 keV was chosen to provide good overlap between instruments whose sensitivity ranges were different. The highest point is from RXTE which, as explained in the text, probably included a significant contribution from nearby unresolved point-source and diffuse emission. |
Open with DEXTER |
Among the Wolf-Rayet stars, WR 21a is especially prominent in X-rays: despite its modest optical magnitude, it is one of the five or six brightest sources in both apparent and absolute terms. Since the discovery of 1E 1024.0-5732 in 1979 with the Einstein Observatory by Goldwurm et al. (1987), through its identification with a Wolf-Rayet star by Mereghetti et al. (1994), WR 21a has been observed on ten separate occasions in X-rays as shown in Table 3. All of these data are available through the HEASARC. As we mentioned before, Reig (1999) compared his 1997-RXTE data with earlier Einstein-IPC and ROSAT-PSPC measurements to show that the X-ray luminosity had apparently been steadily rising by about a factor of five in the eighteen years since its discovery and argued that this showed WR 21a is a long-period CWB of the type exemplified by WR 140 (Williams et al. 1990).
Table 3: X-ray observations of WR 21a.
Though in general terms the latter is probably correct, the
details are more complicated. First, the X-ray model which Reig
used had too high an absorbing column density (
)
to be consistent with the the
soft X-ray data; and second, the faintness of the pair of
ROSAT-HRI measurements made in 1994 (Belloni & Mereghetti 1994)
contradicts the apparent inexorable rise in luminosity since 1979.
Since the RXTE observation, two archived sets of ASCA data have
also become available that are useful for bridging the soft X-ray
images and the hard X-ray collimator data. The first ASCA
observation took place two months after Reig's RXTE pointing
though WR 21a was not the main objective and thus appeared near
the edge of the GIS field-of-view, one of the two ASCA instruments
that provided imaging X-ray spectroscopy. As a consequence there
are no data from the SIS, the other instrument. On the other hand,
data are available from the full set of ASCA instruments from an
observation performed nearly a year later at the end of 1998.
We have obtained and analysed with XSPEC v11.2 all the archived
spectra and associated response matrices available from the
HEASARC. Despite the obvious changes in overall luminosity, we
could find no evidence of any changes in the shape of the spectrum
which, within the limited energy resolution available, seems to be
consistent with the relatively hot few keV thermal plasma observed
from the Wolf-Rayet binaries exemplified by WR 140 (Pollock et al.
2005), in contrast with the cooler temperatures more typical of
the intrinsic emission of single stars (see for example the
studies on the presumably single WN stars WR 1, Ignace et al.
2003; WR 6, Skinner et al. 2002b; and WR 110, Skinner et al.
2002a). The spectrum was modeled as an absorbed Bremsstrahlung
continuum with additional emission lines of Si, Mg and Ne. The
best-fit values of column density and temperature were
,
about a factor of 4 lower
than Reig's (1999) value, and
keV. This empirical
approach has the natural advantage of reproducing the range of
ionization species in the spectrum, notably the simultaneous
presence of the lines of SiXIII and SiXIV. The alternative fits
given by XSPEC's plasma models were slightly worse but gave
completely consistent best-fit values of column density and
temperature.
The luminosities reported in Table 3 are for a joint fit to all the available spectra with only the luminosities free to vary between observations. The resulting lightcurve is shown in Fig. 5. The X-ray variability is apparently irregular though the measurements are spaced at such large intervals with respect to the newly-discovered period of weeks (Niemela et al. 2005) that it will only be possible to tell if it is related to the binary orbit once a precise orbit is available. Some care is also required with the brightest point that came from RXTE, the only instrument here with no imaging capabilities. Though Reig made a correction for the emission from other nearby sources by adding an extra spectral component with fixed parameters, this is quite uncertain, because of the extensive diffuse emission and the strength of the point sources enumerated by Belloni & Mereghetti (1994), of which 1E 1022.2-5730 is of similar spectral shape to WR 21a.
The nature of the EGRET unidentified gamma-ray sources (Hartman et al. 1999) has become one of the most intriguing questions in astrophysics (e.g. Romero 2001). In the particular case of 3EG J1027-5817, the nearby X-ray source associated with WR 21a is indicated in the Third EGRET catalog as a potential counterpart.
The presence of a non-thermal contribution to the radio spectrum of WR 21a implies the existence of a population of relativistic particles in the source, which are probably accelerated at the CWR by diffusive shock acceleration (e.g. Bell 1978a,b) and cool by synchrotron emission in the local magnetic field. Electrons can also cool in such an environment through inverse-Compton interactions with stellar UV photons, producing non-thermal X-rays and gamma-rays (e.g. Pollock 1987; Benaglia & Romero 2003). However, the facts that the X-ray emission from the system can be correctly modeled as thermal Bremsstrahlung and that the source has not been directly detected at gamma-rays suggest that the magnetic energy density in the CWR should largely exceed the photon energy density, implying significantly shorter cooling timescales for the synchrotron mechanism.
The same mechanism that accelerates the electrons should also operate on the ions. Synchrotron losses are not relevant for protons in the environment of the CWR. The maximum energy they can achieve will be determined by the photo-pion losses in the UV stellar field and by the size constraint imposed by the limited space available for the acceleration process. In the present case, where the CWR is not resolved and the geometry of the system remains unknown, we cannot calculate the high-energy cutoff for the non-thermal proton distribution. A value between 10 and 100 GeV seems not unreasonable (see Benaglia & Romero 2003).
It could be the case that some of these protons diffuse up to a
nearby cloud where they might be trapped in the magnetic field,
which is expected to be higher than the average value in the ISM
(Crutcher 1999). Then they will interact there with the local
material producing gamma-rays through
interactions and the subsequent
decays. The situation of a passive cloud irradiated by cosmic rays
from some nearby accelerator has been discussed in detail by Black
& Fazio (1973) and by Aharonian & Atoyan (1996). In the present
case our ignorance on several basic parameters prevents accurate
calculations, but there remains the possibility that a
part of the flux detected from 3EG J1027-5817 could be originated
in relativistic particles accelerated in the colliding wind region
of WR 21a. Whether this is or not the case could be established
through future observations of the gamma-ray source by instruments
like AGILE and GLAST which could report the source position with
higher accuracy.
We have detected radio emission from WR 21a at 4.8 GHz. The
intensity of the source is 0.25 mJy. The non-detection at
8.64 GHz implies a spectral index of
(
), which significantly departs from a typical
Bremsstrahlung spectrum. Combined thermal/non-thermal spectra are
usually found in colliding-wind binaries. We suggest that this is
also the case here, since the latest spectral determinations show
that WR 21a is a system formed by WN6 and an early O companion
(Reig 1999; Niemela et al. 2005). An upper limit for the system
mass loss rate of
yr-1 is derived from the 4.8-GHz radio flux density.
We have reanalyzed all X-ray observations of WR 21a in order to determine its time history in this waveband. Our results indicate, contrary to previous thought, that the X-ray flux has not been monotonically increasing since 1979 though the coverage is far too sparse to constrain the variability timescale. The X-ray spectrum is consistent with a few keV thermal plasma, with no obvious non-thermal contribution.
Locally accelerated relativistic electrons in the CWR
probably mainly cool by synchrotron emission at radio frequencies,
with small inverse-Compton losses, of which there was no X-ray
evidence. If protons are also accelerated at the colliding-wind
shocks, then they might diffuse through the ISM up to nearby
clouds, where they might interact with an enhanced H I density to produce gamma-rays from -decays.
Future observations with both X-ray and gamma-ray instruments like CHANDRA, AGILE and GLAST can shed additional light on the nature of the high-energy emission in this interesting region. Detailed knowledge, on the other hand, of the orbital parameters of the system WR 21a will allow more sophisticated models to be built of the radiative processes taking place in the colliding-wind region.
Acknowledgements
We thank Virpi Niemela for discussions on this source. This research has been supported by the Argentine agency ANPCyT through grant PICT 03-13291.