A&A 435, 521-543 (2005)
DOI: 10.1051/0004-6361:20042277
N. M. Nagar1,2 - H. Falcke3 - A. S. Wilson4
1 - Kapteyn Institute, Landleven 12, 9747 AD Groningen, The Netherlands
2 -
Astronomy Group, Departamento de Física, Universidad de Concepción, Casilla 160-C, Concepción, Chile
3 -
ASTRON, PO Box 2, 7990 AA Dwingeloo, The Netherlands
Department of Astronomy, Radboud University Nijmegen, Postbus 9010, 6500 GL Nijmegen, The Netherlands
4 -
Department of Astronomy, University of Maryland, College Park, MD 20742, USA
Adjunct Astronomer, Space Telescope Science Institute,
3700 San Martin Drive, Baltimore, MD 21218, USA
Received 29 October 2004 / Accepted 5 February 2005
Abstract
We present the completed results of a high resolution radio imaging survey of
all (200) low-luminosity active galactic nuclei (LLAGNs) and AGNs in
the Palomar Spectroscopic Sample of all (
488) bright northern
galaxies.
The high incidences of pc-scale radio nuclei, with implied brightness
temperatures
107 K, and sub-parsec jets argue for
accreting black holes in
50% of all LINERs and low-luminosity
Seyferts; there is no evidence against all LLAGNs being mini-AGNs.
The detected parsec-scale radio nuclei are preferentially found in massive
ellipticals and in type 1 nuclei (i.e. nuclei with broad H
emission).
The radio luminosity function (RLF) of Palomar Sample LLAGNs and AGNs extends three
orders of magnitude below, and is continuous with, that of "classical'' AGNs.
We find marginal evidence for a low-luminosity turnover in the RLF; nevertheless
LLAGNs are responsible for a significant fraction of present day mass accretion.
Adopting a model of a relativistic jet from Falcke &
Biermann, we show that the accretion power output in LLAGNs is dominated
by the kinetic power in the observed
jets rather than the radiated bolometric luminosity. The Palomar LLAGNs and AGNs follow
the same scaling between jet kinetic power and narrow line region (NLR) luminosity as the
parsec to kilo-parsec jets in powerful radio galaxies.
Eddington ratios
(=
)
of
10
-1-10-5 are
implied in jet models of the radio emission.
We find evidence that, in analogy to Galactic black hole candidates, LINERs are in a
"low/hard'' state (gas poor nuclei, low Eddington ratio, ability to launch
collimated jets) while low-luminosity Seyferts are in a "high'' state (gas rich
nuclei, higher Eddington ratio, less likely to launch collimated jets).
In addition to dominating the radiated bolometric luminosity of the nucleus, the radio jets are energetically more significant than
supernovae in the host galaxies,
and are potentially able to deposit sufficient energy into the innermost
parsecs to significantly slow the gas supply to the accretion disk.
Key words: accretion, accretion disks - galaxies: jets - galaxies: nuclei - radio continuum: galaxies - surveys
It is now clear that there is no sharp division between
"active'' galactic nuclei (AGN; i.e. nuclei presumably powered
by accretion onto a nuclear supermassive (105
)
black hole) and
"inactive'' or "normal'' galactic nuclei (nuclei powered by star-formation-related
processes). Rather, there is a continuous sequence of activity levels between
these two extremes.
There are two lines of evidence for this continuity.
The first comprises the ubiquity of black holes and the correlations between
black hole mass, galaxy bulge mass and galaxy bulge velocity dispersion
(Gebhardt et al. 2000; Merritt & Ferrarese 2001; Ferrarese & Merritt 2000; Richstone et al. 1998; Tremaine et al. 2002; Marconi & Hunt 2003).
These results support the idea that many galactic nuclei are quasar relics
(Soltan 1982) and highlight the importance of studying the
coeval evolution of a galaxy and its nuclear black hole.
The second line of evidence is that many nearby galaxy nuclei not considered to be
powerful AGNs, show several characteristics in common with powerful AGNs.
These similarities include the presence of compact radio nuclei and
sub-parsec to 100 pc-scale radio jets (e.g. Nagar et al. 2002a; Heckman 1980),
emission line ratios characteristic of powerful AGNs (e.g. Ho et al. 1997a; Heckman 1980),
broad H
lines (Ho et al. 1997b),
broader H
lines in polarized emission than in total emission (Barth et al. 1999),
water vapor megamasers (Braatz et al. 1997), and
nuclear point-like UV sources (Barth et al. 1998; Maoz et al. 1995).
Important results on the growth of galaxies and their black holes, and on the
properties and history of accretion in AGNs, are now being provided by several
large surveys, e.g. the Sloan Digital Sky Survey (SDSS; Stoughton et al. 2002).
An important complement to these large (and higher redshift) surveys of AGNs
is the study of so-called low-luminosity AGNs (LLAGNs;
i.e. low-luminosity Seyferts, LINERs, and "transition''
nuclei (nuclei with spectra intermediate between those of LINERs and
H II regions)).
Here we use the term LLAGN in a more agnostic manner than AGN: we assume
that AGNs are powered by accretion onto a supermassive black hole but make
no a priori assumption about the power source of LLAGNs.
The emission-line luminosities of LLAGNs
(
1040 erg s-1 by definition; Ho et al. 1997a)
are a factor
102 times weaker than typical SDSS AGNs. If LLAGNs are truly
(weak) AGNs, then extending our studies to LLAGNs is important as they greatly
outnumber powerful AGNs.
LLAGNs are best studied in close (
30 Mpc) nuclei, as a result of
sensitivity limitations and the need to attain adequate linear resolution to
separate any weak accretion related emission from that of the bright host galaxy.
In this paper we focus on the radio properties of the
200 LLAGNs and AGNs
(median distance
17 Mpc) in the Palomar spectroscopic sample of
488 bright northern galaxies (Ho et al. 1997a).
The weak emission-lines of the Palomar LLAGNs
can be modeled in terms of photoionization by hot, young stars
(Filippenko & Terlevich 1992; Terlevich & Melnick 1985; Shields 1992),
by collisional ionization in shocks (Dopita & Sutherland 1995; Fosbury et al. 1978; Koski & Osterbrock 1976; Heckman 1980)
or by starbursts (Alonso-Herrero et al. 1999).
Alternatively, they could trace AGNs accreting either at very low accretion rates
(with radiated luminosity as low as
10-2-10-7 of the Eddington
Luminosity,
),
or at radiative efficiencies (the ratio of radiated energy to accreted mass)
much lower than the typical value of
10%
(e.g. Chap. 7.8 of Frank et al. 1995) assumed for powerful AGNs.
Closely related to these theoretical and observational studies of the
radiation from LLAGNs is the
increasing number of accurate mass determinations for
"massive dark objects'', presumably black holes, in nearby galactic nuclei, as
measured directly by kinematics (e.g. Gebhardt et al. 2003) or inferred via
the correlation between black hole mass (
)
and central stellar velocity dispersion
(
;
Gebhardt et al. 2000; Merritt & Ferrarese 2001; Ferrarese & Merritt 2000; Tremaine et al. 2002) or galaxy bulge mass
(Richstone et al. 1998; Marconi & Hunt 2003).
These mass determinations, coupled with the emitted luminosity from the AGN,
enable a measure of the Eddington ratio, i.e.
the emitted accretion luminosity in units of the
Eddington luminosity (
).
In this paper we argue that accounting for the kinetic power in the
radio jet is crucial when estimating
(and hence
)
in LLAGNs even
though the radiated luminosity in the radio band is bolometrically unimportant.
Our high resolution radio observations of a large number of nearby LLAGNs
considerably increase the number of LLAGNs with reliable black hole mass
estimates and high resolution radio observations, allowing
a better test of the relationship between these quantities.
As discussed in Sect. 1 of Nagar et al. (2002a), a sub-parsec, high brightness
temperature (
K), flat spectrum nuclear radio source
and any radio jets are reliable
indicators of the presence of an accreting supermassive black hole.
Interestingly, compact flat spectrum radio nuclei are also detected toward the
10-15
black holes in Galactic X-ray binary sources, especially during
phases of highly sub-Eddington accretion (see review by Fender & Belloni 2004).
The only known sources of log [
radio emission
in compact starbursts are radio supernovae (RSNe) within the starburst
(e.g. Condon et al. 1991; Smith et al. 1998). However, even RSNe or groups of RSNe cannot
reproduce the compactness, high brightness temperatures, and flat spectral
indices seen in the radio nuclei of LLAGNs (discussed in Sect. 6).
It then only remains to use the radio morphology and spectral shape to test whether
the radio emission originates from a jet (possibly relativistic) launched by the
black hole or from the accretion flow itself. Radio emission is expected from
radiatively inefficient accretion flows (RIAFs), e.g. advection-dominated
(ADAF; Narayan et al. 1998) or convection-dominated (CDAF; Narayan et al. 2000)
accretion flows, possible forms of accretion onto a black hole at low accretion
rates (Rees et al. 1982).
We have argued (Nagar et al. 2002a) that the combination of the
Very Large Array
(VLA; Thompson et al. 1980) and the Very Long Baseline Array1 (VLBA; Napier et al. 1994)
makes a highly effective and efficient tool to unambiguously identify weak AGNs in
bright galactic nuclei.
The main advantages are the minimal obscuration at high gigahertz frequencies,
the high resolution which allows one to easily pick out the AGN as most
radio emission from other sources is usually resolved out, and the high sensitivity.
The effectiveness of radio searches for AGNs in LLAGNs is borne out by the
results of previous papers in this series. These include results of VLA and
VLBA observations of 48 LINERs (Falcke et al. 2000; Nagar et al. 2000, Papers I and II), and a
distance-limited (19) sample of 96 LLAGNs (Nagar et al. 2002a, Paper III), from the
Palomar Sample. These papers showed that 50% of all LINERs and low-luminosity
Seyferts have compact flat-spectrum radio nuclei at 150 mas resolution. Follow-up VLBA
imaging attained a 100% detection rate of high brightness temperature milli-arcsec
scale nuclei in a radio-flux limited subsample. The compactness,
high brightness-temperature (
106 K), and
other properties, all argue for an origin of the radio emission in AGN-related processes.
The morphology (sub-parsec jets are detected in several nuclei) and radio spectral shape
(Nagar et al. 2002b,2001) support the dominant source of radio emission as the self-absorbed
base of a relativistic jet launched by the black hole, rather than a radiatively
inefficient accretion inflow.
Compact radio nuclei are preferentially found in massive ellipticals and in type 1 nuclei.
The core radio luminosity is correlated with the nuclear optical "broad'' H
luminosity,
the nuclear optical "narrow'' emission-line luminosity and width, and the galaxy
luminosity (Nagar et al. 2002a). In these correlations, LLAGNs fall close to the low-luminosity
extrapolations of more powerful AGNs.
The sub-arcsec radio luminosity is correlated with both the estimated mass of the
nuclear black hole and the galaxy bulge luminosity.
Partial correlation analysis on the two correlations yields the result that
each correlation is meaningful even after removing the effect of the other
correlation (Nagar et al. 2002a).
This paper presents completed results of our high resolution radio imaging survey of all LLAGNs and AGNs in the Palomar Sample. Future papers will present results on the 1.4 GHz to 667 GHz radio spectral shapes of a subsample of LLAGNs (Nagar et al., in prep.; preliminary results in Nagar et al. 2002b) and the sub-pc jet morphology and jet proper motions in LLAGNs (Nagar et al., in prep.).
In the following sections, we first define the sample used (Sect. 2) and then summarize previous observations and report on new VLA and VLBA observations which complete the radio survey of LLAGNs and AGNs in the Palomar sample (Sect. 3). The results of all the VLA and VLBA radio observations of the Palomar sample are presented in Sect. 4. These results are used to synthesize an overall picture of the incidence and properties of AGNs in LLAGNs - including the radio luminosity function, importance of jet energetics, and correlations with other emission-line and host galaxy properties - and their continuity with more powerful AGNs (Sect. 5). The results are briefly discussed in Sect. 6 and the major conclusions of the completed radio study are listed in Sect. 7. Finally, the appendix contains a compilation of high resolution radio observations of the 53 absorption-line nuclei in the Palomar sample. In this paper, as in previous papers of this series, we use a Hubble constant H0 = 75 km s-1 Mpc-1 to be consistent with Ho et al. (1997a) who tabulate the results of optical spectroscopy of the Palomar sample. In this paper we use "radio luminosity'' to denote the radiated power at a given radio frequency and "jet power'' or "jet kinetic power'' to denote the kinetic or mechanical power in the jet (as derived from models of relativistic jets).
The results in this paper, and the new observations reported here, are
based on LLAGNs and AGNs selected from the Palomar spectroscopic survey of all
(488) northern galaxies with
mag (Ho et al. 1995).
Spectroscopic parameters (including activity classification) of 418
galaxies in the Palomar spectroscopic survey which show nuclear emission lines
have been presented in Ho et al. (1997a); updates to these,
and upper limits to the
emission-line fluxes of a further 53 nuclei without detected emission-lines,
are presented in Ho et al. (2003a).
Of the 418 galaxies
with nuclear emission lines in Ho et al. (1997a), we consider only the 403 which
belong to the defined Palomar sample.
We thus included in our radio survey approximately 7 AGNs and
190 LLAGNs (using the operational boundary of
erg s-1to distinguish LLAGNs from AGNs: Ho et al. 1997a). The 206 nuclei with
H II region type spectra which make up the balance of the 403 are excluded
from our survey.
Of the 7 AGNs, only two (NGC 1275 and NGC 4151) have H
luminosities
significantly greater than the boundary between AGNs and LLAGNs. The other
five AGNs are within a factor
2 of the boundary. In view of the
significant photometric uncertainties (for some of these nuclei) and the large
aperture of the H
luminosity measurements, these 5 AGNs could be loosely
considered as LLAGNs. Thus, while we
use "Palomar LLAGNs and AGNs'' to describe the sample observed in the
radio, it is worth bearing in mind that this sample is almost exclusively
comprised of LLAGNs.
We have not observed the 53 nuclei without detected emission lines (Ho et al. 2003a), but
list their radio flux densities, derived from the literature, in the Appendix.
Several earlier surveys have targeted a substantial fraction of the
nearby galaxies which are now in the Palomar Sample.
Radio surveys with resolution 1
-10
include
those by Carral et al. (1990); Wrobel & Heeschen (1991); Laurent-Muehleisen et al. (1997); Hummel (1980); Wrobel & Heeschen (1984); Fabbiano et al. (1989); Hummel et al. (1987); Heckman et al. (1980)
and Wrobel et al. (2004).
Higher resolution surveys (VLBA or VLBI) include those by
Jones et al. (1981) and Hummel et al. (1982).
Since the publishing of comprehensive optical results on the Palomar Sample,
three groups have conducted large radio surveys of the sample.
Our group has now completed a 0
15 resolution 15 GHz (2 cm) VLA survey
of all LLAGNs except some transition nuclei at 19
(a total of 162 nuclei observed; Nagar et al. 2002a,2000, this work).
We then observed all strong sources with the VLBA unless they had already
been observed at VLBI resolution (Falcke et al. 2000; Nagar et al. 2002a, this work).
Ho & Ulvestad (2001) and Ulvestad & Ho (2001a) have observed all (45)
Palomar Seyferts at arcsec resolution
at 5 GHz (6 cm) and 1.4 GHz (20 cm) and followed up the strong detections at
multiple frequencies with the VLBA (Anderson et al. 2004).
Filho et al. (2000) and Filho et al. (2004) have completed a 5
-0
3
resolution survey of all transition nuclei in the sample with follow up
VLBA observations of some of the stronger nuclei.
Finally, Ulvestad & Ho (2001b) have completed a survey of a well-defined
sub-sample of 40 H II type nuclei in the Palomar sample and found that
none of them has a compact radio nucleus at the flux levels of those in
LLAGNs in the sample. The latter result justifies the exclusion of
H II type nuclei from the remaining discussion of this paper.
With the new VLA observations reported here,
all except 4 of the LLAGNs and AGNs in the Palomar sample have now
been observed at sub-arcsec resolution with the VLA.
The four exceptions are:
NGC 5850,
NGC 5970,
NGC 5982, and
NGC 5985.
We believe that none of these four nuclei would have been detected in our survey,
since their measured fluxes are <1 mJy in observations
at 1.4-5 GHz with 1
-5
resolution (Wrobel & Heeschen 1991; Hummel et al. 1987).
With the new VLBA observations reported here,
all Palomar LLAGNs and AGNs with
mJy
(except NGC 5377) have been observed at milli-arcsecond resolution with the VLBA.
Fifty one Seyferts and LINERs at 19 were observed at 15 GHz (2 cm)
with the VLA in a 14 hour run on 2001 January 13 and 14.
The VLA was in A-configuration (Thompson et al. 1980) at this time
and was configured to observe in full polarization mode with two channels
("IF''s) of 50 MHz each.
Most target sources were observed at elevations between
40
and 60
;
only a few southern sources were
observed at lower elevations, but always above 33
.
Each target source was observed with a 7 min
integration sandwiched between two 1 min observations
on a nearby strong point-like source (the "phase calibrator'').
Typically, each target galaxy was observed once in this way;
for a handful of galaxies, we were able to make two such passes.
The following galaxies not in the Palomar sample, but selected for having accurate
black hole mass measurements (Richstone et al. 1998),
were also observed during the run:
NGC 205, NGC 221, NGC 821, NGC 1023, NGC 2300,
NGC 7332, NGC 7457, and NGC 7768.
Data were calibrated and mapped using AIPS, following the
standard reduction procedures as outlined in the AIPS
cookbook.
Elevation dependent effects were removed using the post-October
2000 antenna gain solutions, along
with corrections for the sky opacity during the run.
Observations of 3C 286 (observed at elevation 50
)
were used to set the flux-density scale at 15 GHz. A second flux
calibrator, 0410+769 (a.k.a. 0409+768; observed at elevation 47
),
was also observed as a flux check source.
The 1
error in flux bootstrapping (i.e. setting the flux density
scale relative to the flux calibrators) is expected to be roughly 2.5%.
Maps in Stokes I were made with task IMAGR.
Since most targets were observed in "snapshot mode'' (i.e. for a
short period at a single hour angle), the synthesized beam was not optimal,
some of the maps have a low signal-to-noise ratio and any extended structure
would not have been mapped properly.
For sources stronger than about 3 mJy, we were able to iteratively
self-calibrate the data so as to increase the signal-to-noise ratio in the final
map. The total flux of the source did not change appreciably during this self
calibration process; we therefore did not scale up (to compensate for errors in
the phase calibration process) the fluxes of sources weaker than 3 mJy.
The resolution of the final maps was 0
15.
The typical root mean square (rms) noise in the final maps was 0.3 mJy
and we use a formal detection limit of 1.5 mJy (i.e.
).
However, weaker sources (down to 0.7 mJy) have been tentatively
detected in some nuclei with positions coincident with the highly accurate
positions of the optical nuclei (Cotton et al. 1999).
Table 1: High-resolution 15 GHZ VLA imaging of Palomar sample AGN and LLAGN.
In order to obtain uniform mas-resolution maps of all
LLAGNs and AGNs in the Palomar sample with
mJy, we selected 10 LLAGNs from
Table 1 which had not previously been observed at high
enough resolution, signal-to-noise, or image fidelity with the VLBA or
VLBI at 5 GHz.
These ten LLAGNs, plus one galaxy with an H II type nucleus (NGC 3690),
were observed with the VLBA at 4.9 GHz (6 cm) in a 15 hour run on
December 17, 2001.
All observations were performed in single polarization ("LL'') mode, with
128 Megabits per second bitrate, and with 4 channels ("BB''s) of bandwidth
8 MHz each.
Each source was observed at two or three different hour angles in order to
obtain good (u,v)-coverage. For each source, the first observation pass used a
cycle of 4 min on source and 1 min on a nearby
(distance 1.5-5.5
)
phase calibrator, repeated seven times.
The second pass used a cycle of 2 min on source and 1 min on a
nearby phase calibrator, repeated 13 times.
The total integration time on each source was therefore at least
(and typically) 54 min.
The "fringe finder'' sources J0555+3948 and J0927+3902 were briefly
observed and later used for first order synchronization of the
data from the different antennas.
The weather was mostly fair at all VLBA sites.
There were a few
intermittent tape problems at several antennas; all data points with tape
weights less than 0.7 (on a scale of 0 to 1) were deleted.
Data were calibrated using AIPS, closely following the procedures
in the "VLBA pipeline'' (Sjouwerman et al. in prep).
Bad (u,v) data were deleted before the phase solutions of the
phase-calibrator observations were transfered to the galaxy data.
Images in Stokes I (assuming no circular polarization) of the sources were made using AIPS task IMAGR. For sources stronger than about 3 mJy, we were able to iteratively self-calibrate and image the data so as to increase the signal-to-noise in the final map. The peak flux-density of the source typically increased by a factor of 1.3 during the self-calibration process. Therefore, for sources weaker than 4 mJy, on which accurate self-calibration was not possible, we have multiplied the peak detected flux-density by 1.3 as a crude attempt to correct for atmospheric decorrelation losses. The rms noise in the final, uniformly-weighted images is typically 0.15 mJy to 0.2 mJy, and the resolution between 2 mas and 5 mas.
The detection rate of radio nuclei with the VLA is illustrated in
Fig. 1.
When all LLAGNs and AGNs in the Palomar
sample are considered, the VLA observations have detected
21 of 45 (%) Seyferts,
37 of 84 (
%) LINERs, and
10 of 64 (
%) transition nuclei, at a resolution
of
0
15 and above a flux limit of 1-1.5 mJy. Additionally,
one H II type nuclei (NGC 3690) was also detected.
Alternatively, one can state that radio nuclei
with luminosity
W Hz-1are found in
15 of 45 Seyferts,
27 of 84 LINERs, and
6 of 64 transition nuclei.
The radio luminosities of the detected 15 GHz nuclei lie between
1018 and 1023 W Hz-1, similar to the
luminosities seen in "normal'' E/S0 galaxies (Sadler et al. 1989).
It is notable, however, that a significant fraction of
the detected 15 GHz compact nuclei are in spiral galaxies.
Most of the detected 15 GHz nuclear radio sources are compact at the
0
15 resolution (typically 15-25 pc) of our survey: the implied
brightness temperatures are typically
K.
![]() |
Figure 1:
Detection rate of 15 GHz 150-mas-scale radio nuclei for
"L''INERs, "S''eyferts, and "T''ransition nuclei in the Palomar sample.
The total number of objects is shown by the upper histogram and the number detected
is shown by the grey-shaded histogram.
Note the higher detection rates of type 1 (i.e. galaxies with broad H![]() |
Open with DEXTER |
![]() |
Figure 2:
5 GHz (6 cm) VLBA maps of ( left to right) NGC 2273, NGC 4589, NGC 5353,
NGC 5363, and NGC 7626.
The contours are integer powers of ![]() ![]() |
Open with DEXTER |
A complete list of results of the VLA observations of all Palomar LLAGNs and AGNs
appears in Table 1 with columns explained in the footnotes.
All table columns are listed for sources observed by us;
for data taken from the literature we list only the peak and total flux,
the peak luminosity and the reference in which these and the remaining
data of the table can be found.
For the new VLA observations reported here (Sect. 3.1) the
radio positions of detected nuclei were measured directly in J2000 coordinates.
For detections reported earlier in Nagar et al. (2000) and Nagar et al. (2002a), we
have precessed the B1950 coordinates reported there to equinox J2000 using
the SCHED software (the software used to create VLBA observing scripts).
The radio positions for the detected nuclei are limited by the positional
accuracy of the phase calibrators (typically 2-10 mas),
and by the accuracy of the Gaussian fit to the source brightness distribution,
which depends on the signal-to-noise ratio of the source detection.
The overall accuracy should typically be better than 50 mas.
We have compared the radio positions derived here with optical positions
from Cotton et al. (1999a), which were measured from the digital
sky survey with typical 1
accuracy 1
5-2
5 in
each of right ascension and declination. The results (Col. 7 of
Table 1) show a good (
2
)
agreement in most cases.
Very few nuclei show reliable extended structure in our 15 GHz
maps; the absence of extended emission in most nuclei
is not surprising as the high resolution may resolve it out. In addition,
such extended emission is expected to be weak at the high frequency observed.
Table 2: VLBI observations of Palomar sample LLAGNS and AGNS.
For all the 8 additional sources (i.e. not in the Palomar sample)
with accurate black hole masses and
observed in the January 2001 VLA run (Sect. 3.1), we can place
firm 5
upper limits of 1.5 mJy on the nuclear radio emission.
All ten LLAGNs newly observed with the VLBA at 5 GHz were clearly detected in initial maps (i.e. without any form of self-calibration). The single H II type nucleus observed, NGC 3690, was not detected in our observations; a weak (1.5 mJy) high brightness-temperature (>107 K) radio nucleus in this source was detected in previous deep 1.4 GHz VLBI observations (Lonsdale et al. 1993). Of the nuclei detected in our observations, mas-scale radio cores were already known to exist in NGC 1167 (Giovannini et al. 2001; Sanghera et al. 1995), NGC 2911 (Filho et al. 2002; Schilizzi et al. 1983; Slee et al. 1994), NGC 5353, NGC 5363 (Hummel et al. 1982), and NGC 7626 (Xu et al. 2000). Additionally, NGC 2273 (Lonsdale et al. 1992) was also suspected of having a mas-scale radio core. Contour maps of the sources found to be extended in our new VLBA observations are shown in Fig. 2. Images of the other radio nuclei with extended mas-scale structure can be found in Falcke et al. (2000), Nagar et al. (2002a, and references therein), Anderson et al. (2004), and Filho et al. (2004).
The VLBA observations confirm that all except one (NGC 2655) nucleus with
mJy are genuine AGNs with the radio
emission coming from mas- or sub-parsec-scales.
A compilation of the results of all VLBA and VLBI observations of LLAGNs
and AGNs in the Palomar sample is presented in Table 2,
with columns explained in the footnotes. Of the 44 sources listed in the
table, 39 are from the flux-limited sample (i.e.
mJy
in Table 1).
Radio positions of sources with data taken from the literature can be found
in the references listed in Col. 18.
For sources from this and our previous works we list source positions
referenced to the positions of their respective phase-calibrators.
All of these source positions have been updated to reflect the latest
(as of January 2004) phase calibrator positions
(expected accuracy
1 mas; Beasley et al. 2002).
The other factors contributing to the
position uncertainty are the accuracy of the Gaussian fit to the
target source - which should typically be better than 2 mas - and
the error in transfering the phase-calibrator position to the source -
which is expected to be better than 3 mas given the small angular
separations between our source-phase-calibrator pairs
(see e.g. Fig. 3 of Chatterjee et al. 2004).
Thus the overall accuracy of the positions listed in Table 2
should be better than 5 mas.
The implied brightness
temperatures were calculated using the formula given in Falcke et al. (2000);
the results are in the range
>106.3 K to
1010.8 K.
Since most of the sources are unresolved, these values are lower
limits to the true brightness temperatures.
It is interesting to note that the VLBI-detected nuclei in Table 2
include two galaxy pairs in which both members of the pair host an AGN.
NGC 3226 and NGC 3227 (which together form Arp 94) are a galaxy pair
(inter-nuclear distance 2
2 or
13 kpc)
in a strong encounter with prominent tidal plumes.
NGC 5353 and NGC 5354 have a nuclear separation of
1
2 or
12 kpc,
and are members of Hickson compact group 68 (HCG 68).
![]() |
Figure 3:
A plot of the log of the 15 GHz nuclear (150 mas resolution) radio luminosity versus
nuclear H![]() ![]() ![]() |
Open with DEXTER |
Correlations between radio, optical emission line, and host galaxy properties in the Palomar Sample have been addressed in detail for all Seyferts (Ulvestad & Ho 2001a), all (96) LLAGNs at 19 (Nagar et al. 2002a), and all transition nuclei (Filho et al. 2004). The results from these papers are essentially unchanged after expanding the sample to include all LLAGNs and AGNs in the Palomar sample. Here we present only an update on the relation between radio luminosity and optical emission-line luminosity (Fig. 3). The elliptical radio detections (filled symbols in the left panel) are closely related to FR Is, as found earlier by Nagar et al. (2002a). The late-type Palomar Seyferts detected in the radio (filled triangles in the right panel) on the other hand lie closer to the region (and its low luminosity extrapolation) occupied by "classical'' Seyferts (see also Nagar et al. 2002a).
Correlations between radio luminosity, black hole mass, and galaxy luminosity
have been discussed in Nagar et al. (2002a) using all of the
150 mas resolution VLA radio data listed in this paper along with
sub-arcsecond resolution radio data on other nearby galaxies with
black hole mass (
)
estimates. Nagar et al. (2002a) found that the radio luminosity is
correlated with both the black hole mass and the bulge luminosity at the 99.99%
significance level. Partial correlation analysis on the two correlations
yielded the result that each correlation is meaningful even after removing
the effect of the other correlation.
Since then a "fundamental plane'' between black hole mass, X-ray luminosity,
and radio luminosity, which fits both Galactic black hole candidates and AGNs
has been claimed by Merloni et al. (2003) and Falcke et al. (2004).
Here we refine the correlations presented in Nagar et al. (2002a) by considering
only nuclei observed with linear resolution 1 pc in the radio and for
which one radio component can be relatively unambiguously identified with the
location of the central engine. This resolution and morphological criterion
enables a more accurate measure of the radio emission from only the
accretion inflow and/or the sub-parsec base of the jet, and helps avoid
contamination from radio emission originating in knots further out in the jet.
The latter radio emission is common in LLAGNs (Sect. 5.4) and
often dominates the parsec scale radio emission in Seyferts. In fact
many Seyferts have several radio sources in the inner parsec, none of which
are unambiguously identifiable with the central engine
(Kukula et al. 1999; Mundell et al. 2003; Middelberg et al. 2004).
![]() |
Figure 4:
A plot of sub-parsec radio luminosity versus
( left) black hole mass and
( right) bulge luminosity of the host galaxy in the B-band.
Only radio-detected sources relatively unambiguously identified with
the central engine of the AGN (see text) and with radio fluxes measured
at resolution better than 1 pc are plotted as circles (Palomar LLAGNs and
AGNs) and triangles (other LLAGNs and AGNs).
For these, filled symbols are used for elliptical galaxies,
and errors in black hole mass are shown (see text).
LLAGNs and AGNs (some of which are in the Palomar sample)
with radio luminosities measured at resolution between
1 pc and 5 pc are shown as crosses.
Two measurements (at different resolutions; Nagar et al. 2002a) are plotted
for the Galaxy.
The four dotted lines in the left panel represent
Eddington ratios (from 10-6 to 1) calculated assuming that jet kinetic power
dominates the accretion energy output (see Sect. 5.5).
The dashed line in the left panel shows a linear fit to the circles and
triangles with log
![]() ![]() |
Open with DEXTER |
Figure 4 shows the relation between sub-parsec radio luminosity,
,
and host galaxy bulge luminosity in the B-band. Black hole
masses are either directly measured from stellar, gas, or maser
dynamics, or estimated from the central stellar velocity dispersion,
(Gebhardt et al. 2003; Emsellem et al. 1999, for all other references see Nagar et al. 2002a).
We used the relationship of Tremaine et al. (2002) to estimate
from
.
For the circles and triangles in the plot, we also show
the error in the black hole mass determination (Fig. 4a). These errors
represent reported 1
errors for masses measured directly from stellar, gas,
or maser dynamics (e.g. Gebhardt et al. 2003), or reflect 1
errors in the reported
central stellar velocity dispersion (
)
assuming no additional error in
converting
to black hole mass (Tremaine et al. 2002).
The plotted circles show the 44 galaxies in Table 2, except
NGC 266 (linear resolution 1.3 pc; plotted as a cross),
NGC 1167, NGC 4772 (no measurement of
in the literature),
and NGC 2655 (not detected with the VLBA).
NGC 4395
(in the Palomar sample, and detected in deep VLBA
observations; Wrobel et al. 2001) is taken to not have a bulge
(Filippenko & Ho 2003).
In addition, we plot (as triangles) 6 galaxies which are not
Palomar LLAGNs or Palomar AGNs and which have
radio nuclei relatively unambiguously identified with
the central engine in maps with resolution better than 1 pc, and
available black hole mass measurements or estimates from
.
These 6 galaxies are:
the Galaxy (Krichbaum et al. 1998), for which as in Nagar et al. (2002a) we plot two
radio luminosities: that of only Sgr A* (10 mas or
pc resolution) and
that for the full Sgr complex; and
Seyferts observed with the VLBA/I (from the list compiled in Middelberg et al. 2004):
Mrk 348 (Ulvestad et al. 1999),
NGC 1052 (Kellermann et al. 1998),
NGC 2110, NGC 5252 (Mundell et al. 2000),
and NGC 5548 (Wrobel 2000).
Xu et al. (2000) observed additional (i.e. not in the Palomar Sample) FR Is
with the VLBA, but their resolution of 7 mas translates
to >1 pc and only some of these FR Is could be included in the figure as crosses.
We do not consider other more powerful radio sources (e.g. blazars) to
minimize confusion due to relativistic beaming.
A visual inspection of Fig. 4 shows a rough overall correlation between
radio luminosity and both black hole mass and galaxy bulge luminosity.
The large scatter in both relationships is possibly due to a large range of accretion
rates at any given black hole mass (dotted lines in Fig. 4 left),
which results in widely different output radio luminosities.
Statistical tests from the ASURV package
(Lavalley et al. 1992), suggest that both correlations are statistically significant
even when the Galaxy and other nuclei with low black hole mass are removed,
as detailed below.
The radio luminosity and black hole mass correlation has significance 99.95-99.98% when
all circles and triangles in Fig. 4 (left panel) are considered.
This significance drops only slightly (98.9-99.8%) when the Galaxy and NGC 4395
are not considered, and is still 98.9-99.8% when only nuclei with log
> 107
are considered.
The correlation between radio luminosity and bulge luminosity has significance
99.3-99.7% when all circles and triangles in Fig. 4 (right panel) are
considered. This correlation is still significant (95.6-99.2%) when the Galaxy is not
considered.
Linear regression analysis by the Buckley James method in ASURV on the circles and
triangles in Fig. 4
(not considering the Galaxy in both cases, and using only
nuclei with log
> 107
in the case of the relation between radio
luminosity and
)
yields:
![]() |
|||
![]() |
|||
![]() |
(1) |
![]() |
Figure 5:
a) The 15 GHz radio luminosity function (RLF) of the 150 mas-scale
radio nuclei in the LLAGNs and AGNs of the Palomar sample
(open circles, with the number of galaxies in each
bin listed above the symbol). For a rough comparison (see text) we also plot the
15 GHz RLFs (after converting to our value of H0 and frequency; see text) of
Markarian Seyferts and CfA Seyferts.
The dotted line is a power-law (-0.78) fit to the Palomar nuclear
RLF (excluding the two lowest radio luminosity points).
Also shown is the estimated 15 GHz nuclear RLF of galaxies in the
local group (open square, with 2 galaxies; see text).
The upper x axes of both panels show the implied logarithm of the mass
accretion rate (in ![]() |
Open with DEXTER |
The relation
between radio luminosity and black hole mass has been discussed
by several authors, with conflicting results.
For example, Franceschini et al. (1998) claimed a correlation with a much steeper slope
based on a small number of objects, while Ho (2002) and
Woo & Urry (2002) found no correlation for larger
samples of AGNs and LLAGNs. We emphasize that our results and those of Ho (2002)
and Woo & Urry (2002) are not contradictory given the samples
and physical scales of the radio emission.
Here, in Fig. 4, we specifically address the correlation
between radio emission from the base of the
jet or from the innermost accretion inflow
(measured here by the sub-parsec radio emission in nuclei for which
this radio emission is relatively unambiguously associated with the
true "core'' rather than with larger scale "jets'')
and black hole mass
or bulge luminosity for a sample dominated by nearby LLAGNs.
It is possible that the range of actual Eddington
ratios
(which could be responsible for the
scatter in radio luminosities at any given black hole mass) is
small enough among LLAGNs in our sample to not destroy the correlation between sub-parsec
radio luminosity and black hole mass or bulge luminosity.
Indeed, the estimated
for the nuclei in Fig. 4 (calculated
assuming the jet power,
,
dominates the accretion energy output; see
Sect. 5.5) spans a relatively narrow range (see points and dashed
lines in the left panel of Fig. 4).
Ho (2002), on the other hand, used a sample with a larger range of
and
measured nuclear radio luminosities at lower resolution (5
;
or several hundreds of
parsecs). Both factors ("classical'' Seyferts are apparently more likely to produce radio
emission on 100-pc scales than LLAGNs; see Sect. 5.4)
could have lead to the absence of a correlation between radio luminosity and black hole mass
in his sample.
Similar factors would also apply to the results of Woo & Urry (2002), who used a sample
which covered a larger range of
and which
included many powerful (and presumably relativistically beamed) radio sources.
The nuclear (150 mas-scale) 15 GHz RLF for all 68 radio-detected Palomar
sample LLAGNs and AGNs (Table 1) is plotted in Fig. 5a
as open circles. LLAGNs not detected in the radio have been excluded from the
RLF calculation.
Only 2 of the radio detections in the Palomar sample (NGC 1275 and NGC 4151) are
true AGNs as defined by their emission-line properties
i.e. they have
erg s-1.
The H II-region nuclei
and absorption-line nuclei, which are excluded from this RLF calculation,
have much lower radio luminosities than the LLAGNs and AGNs in the sample.
The RLF has been computed via the bivariate optical-radio luminosity
function (following the method of Meurs & Wilson 1984), after correcting for
the incompleteness (Sandage et al. 1979) of the RSA catalog (from which the
Palomar sample was drawn). Errors were computed following the method of
Condon (1989).
We emphasize that the nuclear 15 GHz RLF presented here traces
only the inner AGN jet or accretion inflow, and does not include the
contribution from >150 mas-scale radio jets.
RLFs at 1.4 GHz and 5 GHz for Palomar Seyferts have been presented in Ulvestad & Ho (2001a), and a RLF (using observations at several frequencies and resolutions) for the complete Palomar sample has also been discussed in Filho (2003, Ph.D. Thesis). The RLF we present here (first presented in Nagar 2003) is in rough agreement with the above RLFs given the errors. The advantages of the RLF presented here are threefold. First, it is based on a larger number (68) of radio detections. Second, it is derived from uniform radio data: all except 13 radio detections and 21 radio non-detections have their fluxes or upper limits derived from our 15 GHz (2 cm) VLA A-configuration observations reduced in a uniform way; these 34 exceptions have fluxes or upper limits derived from data of similar resolution and frequency. Third, the radio data were obtained at high resolution and high frequency: both these factors reduce the contamination of star-formation-related emission to the true AGN radio emission, which is especially important at these low AGN luminosities.
At the highest luminosities the Palomar RLF is in good agreement with that of "classical'' Seyferts (Fig. 5a), as previously noted by Ulvestad & Ho (2001a). We have plotted the RLFs of Markarian Seyferts (1.4 GHz RLF from Meurs & Wilson 1984) and of CfA Seyferts (1.4 GHz RLF calculated by Ulvestad & Ho (2001a) using 8 GHz data from Kukula et al. (1995)), after conversion to our values of H0 and frequency (assuming that the 1.4 GHz emission is optically-thin with spectral index -0.75). Of course, the "classical'' Seyfert RLFs are not strictly comparable to ours since our 15 GHz survey detected flat-spectrum emission (Nagar et al. 2002b,2001) which may have been invisible to the 1.4 GHz observations, and conversely, the 15 GHz observations may not have detected the steep spectrum emission which dominated the 1.4 GHz observations. Furthermore, the AGN-related radio structures in the Palomar LLAGNs are either sub-arcsec (i.e. the nuclear radio emission is the total AGN-related radio emission) or, in a few cases, FR I-like. Neither of these can be easily compared or corrected to the radio structures seen in most Markarian or CfA Seyferts at lower radio frequencies.
At lower luminosities, the sample extends the RLF of powerful AGNs by more than
three orders of magnitude. A linear (in log-log space) fit to the Palomar nuclear RLF
above 1019 Watt Hz-1 (i.e. excluding the two lowest luminosity bins; see below)
yields:
As a further test we simulated the shape of the Palomar RLF at low luminosities by converting some or all of the LLAGNs not detected in our 15 GHz survey into radio detections as follows (a total of 6 simulated RLFs; filled symbols in Fig. 5b). We first recomputed the RLF assuming that all 125 radio non-detected LLAGNs had radio nuclei with flux 0.5 mJy and using this value as the assumed detection limit of the survey. We then recomputed the RLF for the three cases that the non-detected Seyferts and LINERs (71 nuclei) all had radio nuclei with flux 1 mJy, 0.5 mJy, or 0.1 mJy (and using the corresponding flux as the assumed detection limit of the survey). The above four simulated RLFs are plotted with filled circles in Fig. 5b. To explore two more possibilities, we set the radio flux of individual non-detected LLAGNs to the values expected from the rough proportionality between bulge luminosity and 150 mas-scale radio luminosity for nearby galaxies (dashed line in Fig. 18, lower panel, of Nagar et al. 2002a). We then recomputed the RLF for two assumed detection limits (0.1 mJy and 0.01 mJy) and ensured that the estimated fluxes fell in the range between 1 mJy (our survey's actual detection limit) and the assumed detection limit (if the estimated flux was lower than the assumed detection limit then the nucleus continued to be treated as a non-detection). The resulting two simulated RLFs, calculated from a total of 98 and 170 radio detections, respectively, are plotted with filled squares in Fig. 5b. All the simulated RLFs support a low luminosity break in the Palomar RLF. The actual shape of the low end of the RLF is uncertain and in Fig. 5b and Eq. (3) we show a potential power law fit which satisfies the current data and extrapolations.
About 20 of the 44 sources in Table 2 have detected sub-parsec scale (and/or sometimes larger scale) "jets''. These include NGC 315 (Cotton et al. 1999b; Giovannini et al. 2001; Fomalont et al. 2000), NGC 1167 (Giovannini et al. 2001, this work), NGC 1275 (Walker et al. 2000; Dhawan et al. 1998), NGC 2273 (this work), NGC 3031 (M 81; Bietenholz et al. 2000), NGC 3079 (Trotter et al. 1998), NGC 4151 (Ulvestad et al. 1998; Mundell et al. 2003), NGC 4258 (Herrnstein et al. 1997), NGC 4261 (e.g. Jones et al. 2001), NGC 4278 (Falcke et al. 2000; Jones et al. 1984), NGC 4374 (M 84; Wrobel et al. 1996, this work), NGC 4486 (M 87; Junor & Biretta 1995), NGC 4552 (M 89; Nagar et al. 2002a), NGC 4589 and NGC 5353 (this work), NGC 5354 (Filho et al. 2004), NGC 5363 (this work), NGC 5846 (Filho et al. 2004), NGC 6500 (Falcke et al. 2000), and NGC 7626 (this work, also tentatively detected by Xu et al. 2000).
The mas-detected radio nuclei fit into four
categories, with Seyferts and LINERs preferentially belonging to one or the
other category:
(a) powerful radio galaxies or low power radio galaxies -
NGC 315,
NGC 1275,
NGC 4261,
NGC 4374,
NGC 4486 and
NGC 7626
- which have an elliptical host, a LINER nuclear spectrum, and collimated
sub-parsec to kpc jets;
(b) nuclei which do not have detected parsec-scale jets, but have larger
(100 pc- or kpc-scale) jets. These are preferentially Seyfert-like nuclei
(6 nuclei) though
NGC 5846 (transition nucleus) falls in
this class;
(c) nuclei with detected sub-parsec jets but weak or no known larger scale jets
- preferentially in LINERs or transition nuclei. These nuclei -
NGC 4278,
NGC 4552,
NGC 4589,
NGC 5353,
NGC 5354, and
NGC 6500 -
typically show curved or highly bent jets (Filho et al. 2004; Nagar et al. 2002a, this work)
and proper motion studies (Nagar et al., in prep.) suggest that these jets are
frustrated in the inner few parsecs;
(d) the remaining 23 nuclei in Table 2 do not show extended mas-scale
emission but require more detailed study of their 100 pc to kpc scale radio emission.
The disappearance of the larger-scale jet in category (c) above, and the
morphology of their parsec-scale jets (highly curved or bent) suggests that
the jet does not propagate beyond the inner few parsecs, either due to being
uncollimated, or because of interaction with the ambient medium. If this is
the case, the energy deposited into the inner few parsecs by the jet (next
section) is significant, and could potentially be responsible for lowering the larger
scale (i.e. outside the accretion disk) gas inflow and thus ultimately the accretion
rate.
With an estimated black hole mass and an emitted luminosity, one can estimate the
Eddington ratio, i.e.
=
.
Previous calculations of
for LLAGNs have considered only the radiated component
of
.
Since LLAGNs lack a "big blue bump'', the X-ray emission has been thought to dominate
the bolometric luminosity (Ho 1999).
With most LLAGNs having hard X-ray luminosities of only
1040 erg s-1
or lower, the accretion is inferred to be highly sub-Eddington
(Filho et al. 2004; Ho et al. 2001; Terashima & Wilson 2003).
![]() |
Figure 6:
Left: the implied "minimum jet power'',
(
![]() ![]() ![]() ![]() ![]() ![]() |
Open with DEXTER |
![]() |
Figure 7:
A comparison of the kinetic and radiated accretion power outputs as a fraction of
![]() ![]() ![]() ![]() |
Open with DEXTER |
If, as justified above, the compact radio nuclei and sub-parsec jets represent
emission from the base of a relativistic jet launched close to the black hole,
then the kinetic energy in the jet can be quite high.
Equation 20 of Falcke & Biermann (1999) - assuming an average inclination
of 45
- can be used to obtain "minimum jet powers'' (
)
of
(Fig. 6, left panel)
from the 15 GHz peak VLA flux of radio detected LLAGNs.
For LLAGNs with both hard X-ray and radio luminosity available, this jet power
greatly exceeds the radiated X-ray luminosity (Fig. 6, right panel).
Since the bolometric luminosity (
)
in electromagnetic radiation is estimated to be only
for LLAGNs (Ho 1999), this suggests
that the accretion power output is dominated by the jet power.
This domination of jet power over X-ray emission is analogous to the situations for
10-15
black holes in Galactic X-ray binary systems (Fender et al. 2003)
and for powerful radio galaxies (e.g. Owen et al. 2000; Celotti & Fabian 1993).
![]() |
Figure 8:
A plot of Jet Power (we use the "minimum jet power'',
![]() |
Open with DEXTER |
To expand on this issue, we compare the estimated minimum jet power to the observed
hard X-ray luminosity and emission-line luminosities for the Palomar sample LLAGNs.
Clearly (Fig. 7, left) the minimum jet power is significantly larger
than the measured hard X-ray luminosity (as noted above) and the luminosity in broad H.
On the other hand, if the radiated bolometric luminosity is estimated from the [O III] luminosity - from the empirical result that the spectral energy
density of type 1 AGNs typically shows
(Heckman et al. 2004, see also next section) -
then LLAGNs show similar distributions of minimum jet power and radiated bolometric
luminosity (Fig. 7, right).
The radio detected LLAGNs in the Palomar sample (circles; Fig. 8)
fall nicely at the low luminosity end of the correlation between jet kinetic
power and total emission line luminosity from the narrow line region (NLR)
for more powerful FR I and FR II galaxies. This figure includes FR I and FR II
radio galaxies (slanted crosses; in these the jet kinetic power is estimated from
lobe-feeding energy arguments; Rawlings & Saunders 1991) and other powerful radio sources
(including BL Lacs, quasars, and radio galaxies) with parsec-scale jets
(crosses; in these the bulk kinetic energy in the jet was estimated using
a self-Compton synchrotron model applied to the parsec-scale jet; Celotti & Fabian 1993).
We estimated the NLR luminosity for the Palomar LLAGNs and
AGNs following Celotti & Fabian (1993):
The energetics of the jet are also important in the context of so called cooling flows
and in regulating the feedback between galaxy growth and black hole growth. For example,
in many clusters the central cD galaxy has an FR I radio morphology, with the radio jet
playing an important role in the above issues and in the global energetics of the cluster
gas (Owen et al. 2000; Ostriker & Ciotti 2004; Binney 2004b).
A comparison of the jet kinetic power with the power
injected into the ISM by supernovae
types I and II in the host galaxies
is shown in Fig. 9 for the radio detected
Palomar LLAGNs/AGNs.
![]() |
Figure 9:
A comparison of the "minimum jet power'' (
![]() |
Open with DEXTER |
![]() |
Figure 10:
Plots of the "minimum jet power'' as a fraction of Eddington luminosity
(equivalent to the Eddington ratio,
![]() ![]() ![]() |
Open with DEXTER |
In summary, Eddington ratios,
,
calculated from hard X-ray luminosities
heavily underestimate the true accretion power output in LLAGNs.
This finding is in line with that for more powerful radio galaxies, where the
jet kinetic power is two to five orders of magnitude larger than the radiated
radio luminosity, and often significantly larger than the total radiated bolometric
luminosity (Owen et al. 2000; Celotti & Fabian 1993).
Using
or
yields similar distributions of
.
This, and the scaling between
and
,
argues for a common central engine in all AGNs from LLAGNs to powerful
FR IIs, but with the caveat that the [O III] luminosity in LLAGNs is potentially
contaminated by non accretion related processes. Finally, the jet is
a significant (maybe even dominant) source of heating in the galaxy. If the jet
is disrupted in the inner parsecs, then the jet power could play a role in slowing
any cooling flow or other accretion inflow on parsec-scales, thus starving the
accretion disk.
In the previous section we showed that the accretion energy output in LLAGNs with
radio nuclei is dominated by the jet power, and is of the order of
= 10-6 to 10-2.
Here we look at the dependence of this jet-power-derived
on other quantities.
Heckman et al. (2004) have investigated black hole and galaxy growth using 23 000 type 2
AGNs from the Sloan Digital Sky Survey (SDSS). They use
to estimate
black hole mass, and
.
They find that most present-day accretion occurs onto black holes with masses
<
,
and that most black hole growth takes place in systems with
accretion rate less than one fifth of the Eddington rate.
It is interesting to apply their analysis to the Palomar LLAGNs since these objects
have emission-line luminosities typically ten to a hundred times fainter than the
SDSS AGNs.
The Palomar LLAGNs show a different behavior to the SDSS AGNs:
the numerous Palomar LLAGNs with low black hole masses are accreting
a similar
mass per year as the fewer Palomar LLAGNs and Palomar AGNs at higher radio luminosity.
This is true whether the accretion rate is calculated from the [O III]
luminosity, as in Heckman et al. (2004), or from
(e.g. Fig. 5, upper x-axis).
The Palomar sample ellipticals (filled symbols in Fig. 10)
show a strong correlation between Eddington
ratio,
(calculated assuming the jet power dominates the
accretion energy output)
and all of emission-line luminosity, radio luminosity,
and the ratio of radio luminosity to emission line luminosity.
Among the non-elliptical nuclei (open symbols in Fig. 10),
Seyfert nuclei (triangles) display higher Eddington ratios
than LINERs (circles), even
though the distribution of radio luminosities (from which
is calculated) is
similar for the two classes.
This is most clearly noticeable in Fig. 10c.
The optical spectroscopy (of 486 nuclei) was obtained at the 5 m Hale
telescope with typical exposures of 30 min to 1 hr per nucleus.
Has this optical spectroscopy missed any (radio- or X-ray identified)
AGNs
in the Palomar sample? The spectroscopic survey found emission-lines in all
except 53 nuclei (Ho et al. 2003a).
Of these 53 absorption line nuclei we found only two with radio nuclei which would
identify them as definite AGNs, and a further three to five with radio nuclei possibly
related to an AGN (see the appendix).
We could not find reliable hard
X-ray identifications of AGNs, for lack of data, in
any of the absorption line nuclei. The H II nuclei in the Palomar sample also
show no indication of an AGN in the radio (Ulvestad & Ho 2001b) or X-ray.
Thus, the optical spectroscopic survey has missed only two
definite (and perhaps three or five probable) AGNs which would have been picked
up by a radio survey with detection limit
1 mJy.
The reliability of AGN identification from optical spectroscopy alone is hard
to quantify.
At these low luminosities, emission lines could be
powered by sources other than an AGN, e.g. a nuclear starburst (Maoz et al. 1998).
![]() |
Figure 11:
The cumulative number of "definite''
(solid lines for nuclei with a hard X-ray nuclear source and
dashed lines for type 1 nuclei, i.e. with broad H![]() ![]() ![]() ![]() |
Open with DEXTER |
The radio imaging (of 200 nuclei) was done with the VLA with typical integration
times of 10 to 15 min per nucleus. Follow-up VLBA imaging (1 h per
nucleus) showed that the VLA-only imaging could be used for reliable identification
of the radio nuclei as AGN-related (Sect. 4.2).
The high brightness temperature radio nuclei and parsec-scale jets,
found through VLBA observations, are the
most reliable indicators of AGNs in these nuclei as a class.
Our radio imaging has identified fewer AGN candidates
than the optical spectroscopy,
though it is likely that deeper radio imaging will uncover significantly
more AGNs (Nagar et al. 2002a).
It is difficult to ascertain whether the radio survey has missed any
(definite) optically identified AGNs, since the detection of weak emission lines does not
guarantee the presence of a low-luminosity accretion-powered nucleus.
Ideally, one requires hard X-ray confirmation of the presence of an AGN: this issue
will be more fully discussed in Terashima et al. (in prep.).
The cumulative number of "definite'' AGNs identified by the optical spectroscopic
and the radio imaging methods, as a function of the luminosity
in the narrow
H
line, is shown in Fig. 11. Here we use the presence of either a
nuclear hard X-ray source (solid lines; Fig. 11) or broad H
emission
(dashed lines; Fig. 11) as the signpost of a "definite'' AGN -
i.e. an object powered by accretion onto a supermassive black hole.
Our radio survey has detected 26 of 39 (66%) of the type 1 nuclei in the sample. Of the 14 type 1
nuclei not detected in our radio survey, all 5 Seyferts were found to have radio nuclei
in the deeper radio survey of Ho & Ulvestad (2001), while the nature of the others is unknown.
In summary, optical spectroscopy of the Palomar sample has found almost all radio or X-ray identified AGNs to have emission-lines: as discussed in the Appendix, very few of the nuclei with only absorption lines have radio emission likely powered by an accreting black hole. A caveat here is that the absorption line nuclei have not been surveyed in precisely the same way as we have surveyed the AGNs and LLAGNs. The optical spectroscopic method also finds many nuclei with emission lines powered by hot stars (H II nuclei) and these emission lines can hide weaker emission lines from an AGN. High resolution, high frequency radio imaging (the present survey) has detected a smaller fraction of AGN candidates in the Palomar sample than the optical spectroscopic method, but we have argued that these radio sources are not related to stellar processes. Thus, the presence of a compact flat-spectrum high brightness-temperature radio core is a more reliable indicator of an accreting black hole than the presence of optical emission lines, at least at these low emission line and radio luminosities. A hard X-ray nucleus is also an ideal signpost of an AGN. However, high resolution (i.e. Chandra) is required to minimize confusion with X-ray binaries or Ultraluminous X-ray sources (ULXs), which have similar luminosities to the AGN in LLAGNs. Further, a large X-ray survey is very expensive in terms of telescope time. Instead, scientific results can be efficiently attained by hard X-ray observations of subsamples selected to have a compact radio core (Terashima & Wilson 2003; Terashima et al., in prep).
The VLBI results (Sect. 4.2 and Table 2)
confirm that almost all (38 of 39, or 97%) LLAGNs and AGNs in the Palomar sample with
mJy
have detected mas-scale or sub mas-scale radio nuclei with brightness-temperature
107 K.
The only exception is NGC 2655: this nucleus has a steep spectrum at
arcsec resolution (Nagar et al. 2000) and was not detected by us with the VLBA.
Deeper VLBA/I maps show mas-scale radio nuclei in
five Palomar LLAGNs with
mJy
(Table 2).
It is notable that the LLAGNs and AGNs with known ultracompact radio nuclei are
divided between Seyferts and LINERs in proportion to their relative numbers in
the Palomar sample (14 and 23, respectively; see Table 2).
Thus the probability of detecting ultracompact radio nuclei in LLAGNs with
Seyfert and LINER spectra is similar.
Nuclear starbursts have a maximum brightness-temperature of
104-5 K (Condon et al. 1991) while the most luminous known radio
supernova remnants (e.g. Colina et al. 2001) would have brightness
temperatures
107 K even if they were
1 pc in extent.
As argued in Falcke et al. (2000), if the nuclear radio emission is attributed to
thermal processes, the predicted soft X-ray luminosities of LLAGNs would be
at least two orders of magnitude higher than observed by ASCA (Terashima et al. 2000)
and Chandra (Filho et al. 2004; Ho et al. 2001; Terashima & Wilson 2003).
Also, as pointed out by Ulvestad & Ho (2001a), single SNRs (Colina et al. 2001)
or a collection of SNRs (Neff & Ulvestad 2000) would have radio spectral indices
(defined by S
)
0.7 to -0.4 rather than the values
-0.2
to 0.2 seen in the VLBA-detected LLAGNs
(Anderson et al. 2004; Nagar et al. 2002b,2001; Nagar et al., in prep.)
Furthermore, significant flux variability is observed (Nagar et al. 2002a).
Thus, the only currently accepted paradigm which may account for the sub-parsec
radio nuclei is accretion onto a supermassive black hole. In this case,
the mas-scale radio emission is likely to be either emission
from the accretion inflow (Narayan et al. 2000) or synchrotron emission from
the base of the radio jet launched by the accreting supermassive black hole
(Zensus 1997; Falcke & Biermann 1999).
The latter model is supported by the presence of
sub-parsec size jets in many of the nuclei, and the radio spectral shape
(Anderson et al. 2004; Nagar et al. 2002b,2001,2002a).
The radio results imply that a large fraction (perhaps all) of LLAGNs
have accreting massive black holes.
If we consider only the detections of mas-scale radio sources,
then at least
% of
LINERs and low-luminosity Seyferts have accreting black holes.
VLA-detected compact radio nuclei with flux <2.7 mJy were not investigated
with the VLBA; in other respects these nuclei are similar to those with
detected mas scale structure. Thus it is likely that all LLAGNs with
VLA-detected compact radio nuclei (
% of LINERs and low-luminosity
Seyferts) have accreting black holes.
The scalings between radio luminosity, emission-line luminosity, and galaxy
luminosity (Ulvestad & Ho 2001a; Filho et al. 2004; Nagar et al. 2002a) provide evidence that the radio
non-detections are simply lower luminosity versions of the radio detections.
In fact we find no reason to disbelieve that all
LLAGNs have an accreting black hole.
Interestingly, ultracompact radio nuclei (Table 2) are found almost exclusively
in massive (
(total)
-20) ellipticals and in type 1 LLAGNs, or both.
For massive ellipticals, the high bulge luminosity and black hole mass appear
to be key factors related to the production of a radio nucleus, in light of the
scalings seen between radio luminosity and these parameters
(see Fig. 4 of present paper and Nagar et al. 2002a).
Among non-ellipticals, the preferential detection of type 1 LLAGNs may result from
the limited sensitivity of optical and radio observations, which detect broad H
and radio nuclei in only the more luminous LLAGNs.
For example, it may be that type 1 LLAGNs are in an outburst phase
during which they temporarily host both broad H
emission and
a compact radio nucleus.
Type 2 LLAGNs, on the other hand, may harbor quiescent AGNs which
do not generate sufficient ionizing photons to power the optical emission lines
(e.g. Filho et al. 2004; Terashima et al. 2000).
Instead, their emission lines could be powered by star formation related
processes (Maoz et al. 1998).
As another alternative, one can invoke the unified scheme (Antonucci 1993) and
posit that all LLAGNs have accreting black holes and either
(a) the radio emission in type 1 LLAGNs is beamed (weakly relativistic jets
[
]
can give boost factors of up to
5) and/or
(b) the 15 GHz radio emission in type 2 LLAGNs is free-free absorbed by a
"torus''-like structure i.e.
.
The radio and emission line properties of LLAGNs in elliptical galaxies are consistent with them being scaled-down FR Is (Sects. 5.1 and 5.5), confirming earlier such suggestions with smaller samples (Verdoes Kleijn et al. 2002; Nagar et al. 2002a; Chiaberge et al., in prep.). Additionally, in the context of jet models, the same scaling relationship between jet kinetic power and radiated NLR luminosity is followed by parsec-scale jets in LLAGNs as kpc-scale jets in powerful FR I and FR II radio galaxies (Fig. 8 and Sect. 5.5).
The nuclear environments of low-luminosity Palomar Seyferts are richer in gas than those of
Palomar LINERs (Ho et al. 2003a), as inferred from higher electron densities ()
and higher internal extinction in the former class.
We have found that among non-elliptical hosts, LINER nuclei have lower
Eddington ratios
than Seyfert nuclei (Fig. 10 and Sect. 5.6).
Also, we find evidence for a higher incidence of parsec-scale radio jets in LINERs than
Seyferts (Sect. 5.4); at least
some low luminosity
Seyferts do show larger (100 pc scale) jets. It is tempting to speculate,
in analogy to Galactic black hole candidates (Fender & Belloni 2004), that LINERs with
radio nuclei are in a "low/hard'' state (low Eddington ratio, lack of inner accretion disk,
more efficient at launching collimated jets) while low-luminosity Seyferts are in a "high''
state (higher Eddington ratios, less efficient at launching collimated jets).
Luminous Seyferts, the Palomar sample, and the local group of galaxies together allow
an estimate of the nuclear radio luminosity function over the radio luminosity range
10
15-1024 Watt Hz-1, more than five orders of magnitude larger than
previous AGN samples. At the lowest
luminosities there is tentative evidence for a turnover in the RLF. One must
therefore reach as far down as the LLAGN regime (but not necessarily lower)
to completely study the demographics of nuclear accretion.
This point is especially important since larger surveys, e.g. SDSS, probe
accretion in AGNs with
one or two orders of magnitude larger than
that in the Palomar sample LLAGNs.
When only the radiated luminosity is considered, LLAGNs have very low inferred
Eddington ratios. This requires either a very low mass accretion
rate or a radiatively inefficient accretion mechanism or both, and was among
the original motivations for invoking RIAFs in LLAGNs
(but see Binney 2004a, for an argument against the existence of RIAFs).
Including the jet power (Sect. 5.5) in the accretion output
weakens the motivation for a RIAF.
First, including the jet kinetic power significantly increases the total (radiated plus
kinetic)
and thus the Eddington ratio.
Second, the energy deposited by the jet into the nuclear regions can
potentially heat the gas in the inner parsecs and thus decrease gas supply to
the accretion disk (Sect. 5.5.3).
Together these two factors weaken the previous preference for RIAFs over
a matter-starved accretion disk plus jet system.
The absence in LLAGNs of the "big blue bump'' and Fe K
lines
are thus the main remaining motivations for preferring an optically-thin, geometrically
thick and advection dominated inner accretion structure over the standard
optically-thick, geometrically thin accretion disk.
Jet models indicate that the dominant form of power output in LLAGNs
is the kinetic power of the jet (Sect. 5.5). The Eddington
ratios found are
to 10-6
(Figs. 4, 7 and 10).
In terms of a mass accretion rate (assuming a 10% conversion efficiency) this
translates to
to 10-5
yr-1(upper x-axis of Fig. 5). The summed mass accretion rate for all
Palomar LLAGNs and AGNs in Fig. 5 is 0.4
yr-1.
Now, the idealised jet model of Eq. (20) of Falcke & Biermann (1999)
predicts
(where
is the observed luminosity at radio frequency
)
for a jet inclination of 45
,
while the Palomar RLF has the form
log
.
While there are large uncertainties in applying the jet model, it is worth
remarking
that these scalings imply
.
This implies (since
under the assumption
that the jet power dominates the accretion power output) that
the more numerous nuclei with lower radio luminosity are together accreting the
same mass per
year as the fewer nuclei at higher radio luminosity,
at least down to the probable RLF turnover at log
Watt Hz-1.
Finally, with individual jet powers of
,
LLAGN jets provide a significant source of energy
(Sect. 5.5) into the galactic ISM and also perhaps the IGM.
As discussed
in Di Matteo et al. (2001) a fraction of this jet power
deposited within the central
0.1 kpc
would be sufficient to significantly lower the accretion rate at
least in the case of spherical
accretion.
We have presented the results of our VLA plus VLBA radio survey of 162 LLAGNs and AGNs from the Palomar sample of nearby bright northern galaxies. These data have been supplemented by data and results from two other recent surveys, one by Ho & Ulvestad (2001), Ulvestad & Ho (2001a) and Anderson et al. (2004) and the other by Filho et al. (2000) and Filho et al. (2004). The completion of uniform high resolution radio surveys of the LLAGNs and AGNs in the Palomar sample of nearby bright galaxies has yielded the following main results:
Table 3: Radio fluxes for Palomar absorption-line nuclei.
Acknowledgements
This work was partly funded by the Dutch research organization NWO, through a VENI grant to NN, and by NASA through grants NAG513065 and NAG513557 to the University of Maryland. Parts of this work were completed while NN held a fellowship at Arcetri Observatory, Italy.
The Palomar spectroscopic survey did not detect emission lines in 53 nuclei of the
Palomar Sample; upper limits to the H
luminosity in these nuclei
are listed in Ho et al. (2003a)
.
We have searched the literature and VLA archive for high resolution radio observations
of these 53 nuclei. The results are listed in Table 3. Only two of the
nuclei have AGN-related radio fluxes significantly greater than
1 mJy.
NGC 507 (also known as B2 0120+33) has about 100 mJy at 1.4 GHz in larger scale radio lobes but
a very weak (
1.4 mJy at 5 GHz) radio nucleus (Giovannini et al. 1988);
it may be that the AGN is now switched
off or in a very low state, which could account for the lack of emission-lines.
NGC 4649 has a 1.4 GHz flux of 18 mJy which is distributed in a core plus twin jet
structure (Stanger & Warwick 1986).
Another three (possibly 5) of the 53 nuclei have weak
(
1 mJy) radio nuclei, potentially AGN-related, at 1-5
resolution
(Table 3).