D. Sluse1,2 - D. Hutsemékers
1, -
H. Lamy 3 - R. Cabanac 4,5 - H. Quintana5
1 - Institut d'Astrophysique et de Géophysique,
Université de Liège, Allée du 6 Août 17, B5C, 4000 Liège,
Belgium
2 - European Southern Observatory,
Alonso de Cordova 3107, Santiago 19, Chile
3 - BIRA - IASB, Avenue
Circulaire 3, 1180 Bruxelles, Belgium
4 - Canada France Hawaii
Telescope, 65-1238 Mamalahoa Highway, Kamuela, Hawaii 96743, USA
5 - Departamento de Astronomía y Astrofísica, Pontificia
Universidad Católica de Chile, Casilla 306, Santiago 22, Chile
Received 12 October 2004 / Accepted 15 December 2004
Abstract
New linear polarization measurements (mainly in the
V band) are presented for 203 quasi-stellar objects (QSOs). The
sample is made up of 94 QSOs located in the North Galactic Pole
(NGP) region and of 109 QSOs in the South Galactic Pole (SGP)
region. First time measurements have been obtained for 184
QSOs. Among them, 109 known radio-emitters, 42 known Broad
Absorption Line (BAL) QSOs, and 1 gravitationally lensed
quasi-stellar object. We found high polarization levels (p > 3%)
for 12 QSOs, including the BAL QSO SDSS J1409+0048. For 10 objects, measurements obtained at different epochs do exist. Two of
them show evidence for variability: the highly polarized BL Lac
candidate PKS 1216-010 and the radio source
PKS 1222+037.
Key words: quasars: general - polarization - gravitational lensing
Based on a large sample of quasi-stellar objects with measured optical
polarization, Hutsemékers (1998) discovered that there
exists regions in the sky where the QSO polarization vectors appear
concentrated along preferential directions, on scales up to 1 Gpc. New data enabled Hutsemékers & Lamy (2001) to confirm
this effect. In order to obtain an accurate and complete description
of this intriguing phenomenon, new QSO polarization measurements are
badly needed. The present paper provides a new set of polarimetric
data for 94 QSOs located in the North Galactic Cap and for 109 QSOs
located in the South Galactic Pole region, with details on the
observations, data reduction, and measurements. The comprehensive
analysis and the interpretation of the full sample will be reported
elsewhere.
This sample may be used for a variety of other studies such as investigating the relation between the optical polarization properties of QSOs and their optical spectra (e.g. Stockman et al. 1984) or their radio properties (e.g. Berriman et al. 1990; Rusk 1990; Visvanathan & Wills 1998). It also enables one to study the polarization properties of sub-classes of QSOs such as Broad Absorption Line (BAL) quasi-stellar objects (e.g. Hutsemékers et al. 1998; Schmidt & Hines 1999; Lamy & Hutsemékers 2004) or near-infrared selected QSOs (e.g. Smith et al. 2002).
The polarimetric observations were carried out during 5 runs at the
European Southern Observatory, La Silla, in August 2000, March 2002,
May 2002, August 2003 and October 2003, using the 3.6 m telescope
equipped with EFOSC2. Two additional objects were observed on April 21, 2002 with EFOSC2 and three objects on February 25, 2003 in service
mode with the VLT UT1 equipped with the FORS1 camera. The CCD#40
mounted on EFOSC2 is a 2k 2k CCD with a pixel size of 15
m
corresponding to 0.158
on the sky in the 1
1 binning
mode. The standard resolution mode for the 2k
2k Tektronix CCD
detector of FORS1 has a pixel size of 24
m corresponding to 0.2
on the sky.
With both the EFOSC2 and FORS1 instruments, linear polarimetry is
performed by inserting in the parallel beam a Wollaston prism which
splits the incoming light rays into two orthogonally polarized
beams. Each object in the field has therefore two orthogonally
polarized images on the CCD detector, separated by 20
for
EFOSC2 and 22
for FORS1. To avoid image overlapping, one puts
at the telescope focal plane a special mask made of alternating
transparent and opaque parallel strips whose width corresponds to the
splitting. The object is positioned at the center of a transparent
strip which is imaged on a region of the CCD free of defects. The
final CCD image then consists of alternate orthogonally polarized
strips of the sky, two of them containing the polarized images of the
object itself (di Serego Alighieri 1989, 1997;
Lamy & Hutsemékers 1999, hereafter Lam99). Note that the
polarization measurements do not depend on variable transparency or
seeing since the two orthogonally polarized images of the object are
simultaneously recorded.
In order to derive the two normalized Stokes parameters q and uwhich characterize the linear polarization, frames must be obtained
with at least two different orientations of the Wollaston. In
practice, the Wollaston is not rotated but a half-wave plate (HWP) is
inserted in the optical path and four frames are obtained with the HWP
at 4 different position angles (0
,
22.5
,
45
,
and
67.5
). Even if only two different orientations of the HWP are
sufficient to retrieve the linear polarization (Melnick et al.
1989), two additional orientations make it possible to
remove most of the instrumental polarization (di Serego Alighieri
1989).
Targets were selected from the Véron catalogue (Véron-Cetty & Véron 2001), from the Sloan Digital Sky Survey Early Data Release (Schneider et al. 2002,2003; Reichard et al. 2003), from Becker et al. (2000, 2002), Menou et al. (2001), Barkhouse & Hall (2001), Hall et al. (2002) and Smith et al. (2002), mostly according to their position on the sky i.e. with right ascensions and declinations corresponding to the region of polarization vector alignments defined in Hutsemékers (1998). Bright objects were preferred, as well as BAL, radio-loud and red QSOs which are usually more polarized.
All but two observations were obtained through the Bessel V filter
with typical exposure times between 1 and 10 min per frame.
Polarized and unpolarized standard stars were observed in the Bessel V, R, and gunn i filters in order to unambiguously fix the
zero-point of the polarization position angle and to check the whole
observing and reduction process. In August 2000 and October 2003 the
sky was clear and the seeing around
,
while in August 2003
conditions were not as good with cirrus and seeing around
.
During the other runs, the seeing was always between
and 1
5, and the sky covered at worst with thin
cirrus. A few observations were obtained with a high Moon fraction
illumination (>0.7) and are of lower quality. Indeed, high levels of
sky background induce larger errors in the sky subtraction process and
the subsequent polarization measurements. This is especially relevant
when the polarization of the target is low.
The q and u normalized Stokes parameters are computed from the
measurement of the integrated intensity of the orthogonally polarized
upper and lower images of the object, for the 4 different orientations
of the HWP. They are calculated with respect to the instrumental
reference frame using the following formulae:
![]() |
|||
(1) | |||
![]() |
In order to measure levels of polarization as small as 0.6% with 0.2% uncertainty, it is mandatory to achieve photometry with a very
high accuracy. For this purpose, the data were first corrected for
bias and flat-fielded. The photometric measurements for each image
were done using the MIDAS procedure developed by Lam99. The different
steps of this procedure are the following: (1) several regions of the
background close to the target are interactively chosen; a plane is
fitted to their mean values and subtracted from each image
individually; (2) the position of the object in each strip is measured
at subpixel precision by fitting a 2D Gaussian profile. The flux is
subsequently integrated in circles centered at the fitted positions;
(3) the Stokes parameters are then computed for any reasonable value
of the aperture radius. Since they are found to be stable against radius
variation, it was decided to always measure them inside a fixed
aperture radius of
where HWHM represents the mean half-width at half-maximum of the
gaussian profile. This empirical choice, seeing independent, is
unsensitive to image distorsions (Lam99).
The uncertainties
and
on the normalized Stokes q and u are evaluated by computing the errors on the intensities
and
from the read-out noise and from the
photon noise in the object and the sky background (after converting
the counts in electrons), and by propagating these
errors. Uncertainties are around 0.15% for both q and u. For a
few faint objects listed in Table 1 we were not able to
derive reliable measurements, namely due to a higher than usual sky
background. These measurements are rejected from
the sample presented in Table 4.
A zero-point angle offset correction, filter dependent, is then
applied to the QSO normalized Stokes parameters q and u in order
to convert the polarization angle measured in the instrumental
reference frame into the equatorial reference frame. This angle offset
is determined from polarized standard stars observed each night and
listed in Table 2. These stars have been selected to
have polarization angles distributed in the full [0,
180
]
range. For all stars observed during a given run (and between the runs
themselves), the values of the angle offset do agree within 1
standard deviation
.
We have also observed several unpolarized standard stars in the V, R, and i filters (Table 2). For these stars we measure
%,
% and
% in August 2000, August 2003 and October 2003, respectively, indicating that the
residual instrumental polarization is small, a result in agreement
with the expectation that most of the instrumental polarization is
removed by the observing procedure. No difference between the three
filters has been noticed.
Table 1: The objects for which no reliable polarization measurements could be derived.
Table 2: The observed standard stars.
Since on most CCD frames field stars are simultaneously recorded, one
can use them to estimate the residual instrumental polarization and/or
interstellar polarization. While a frame-by-frame correction of the
QSO Stokes parameters is in principle possible, it is nevertheless
hazardous since we are never sure that the polarization of field stars
correctly represents the interstellar polarization which could affect
distant QSOs. For example, we have found stars located in the same
field with significantly different polarization degrees and
angles. Also, the field stars are often fainter than the QSO such that
a frame-by-frame correction would introduce uncertainties on the QSO
polarization larger than the correction itself. We then compute the
weighted average (
and
)
and dispersion (
)
of the normalized Stokes
parameters of field stars considering the
frames with
suitable stars obtained during a given run. These quantities are given
in Table 3. The small values and dispersions of the
residual polarization confirm the small level of uncorrected
instrumental polarization. They also indicate that, on average, the
interstellar polarization is small, in agreement with the fact that
all objects in the sample are at high galactic
latitudes
(
). To minimize the systematic
errors, this residual polarization is conservatively taken into
account by subtracting the systematic
and
from the measured QSO q and u, and by
adding quadratically the errors. Since
and
are nearly identical in March and May 2002,
only the mean values
%,
% and
% are used. For those objects observed with FORS1 in February 2003, no correction is done, while the correction used for the March
and May 2002 runs is applied to the April 2002 data, obtained with the
same instrumental setup.
Table 3: The residual polarization.
![]() |
Figure 1:
Top: the distribution of the polarization angles of
stars from the Heiles catalogue (Heiles 2000). Only high
latitude stars (
![]() ![]() ![]() ![]() |
Open with DEXTER |
In order to better understand the nature and the effect of this
correction, we illustrate in Fig. 1 (bottom panel) the
distribution of the polarization position angles we have measured for
field stars at high galactic latitude (
). Polarization data reported in Lamy & Hutsemékers
(2000, hereafter Lam00) and obtained with the same
instrumentation are also included. After removing bad quality
measurements and redundancies, this leads to a total sample of 204
field star measurements at
,
of which about
half have polarization angles with
.
The polarization angles of the stars from the Heiles catalogue (Heiles
2000) are illustrated in the top panel of
Fig. 1.
![]() |
Figure 2:
The distribution of the debiased polarization degree of field
stars in the NGP region ( top, from the 2002 data) and in the SGP
region ( bottom, from the 2000 and 2003 data). The correction by the
systematic
![]() ![]() |
Open with DEXTER |
Table 4 summarizes the measurements. The first eight columns give the QSO name, type, equatorial coordinates (J2000) and redshift z, the date of observation and the normalized Stokes parameters q and u corrected for the systematic residual polarization given in Table 3. The normalized Stokes parameters are given in the equatorial reference frame. The QSO name is the one used in the Véron catalogue (Véron-Cetty & Véron 2001) when given, and in the NASA/IPAC Extragalactic Database (NED) otherwise. The name is followed by the object classification. The following notation has been adopted: R if known radio emitter, B if known BAL, RB if both, and U otherwise.
Then, from these values, the polarization degree is evaluated with
p
= (q2+u2)1/2 and the associated error with
where
.
In addition, p must be corrected for the
statistical bias inherent to the fact that p is always a positive
quantity. For this purpose, we used the Wardle & Kronberg estimator
(1974) which was found to be a reasonably good estimator of
the true polarization degree (Simmons & Stewart 1985). The
debiased value p0 of the polarization degree is reported in
Col. 11. The polarization position angle
is obtained by
solving the equations
and
.
The uncertainty of the polarization position angle
is estimated from the standard Serkowski (1962) formula
where the debiased value p0 is conservatively used instead of p, i.e.
.
Note that
due to the HWP chromatism over the V band, an additional error
on
should be accounted for (cf. the
wavelength dependence of the polarization angle offset in di Serego
Alighieri 1997).
Figure 2 illustrates the distribution of the field star
polarization measured on the QSO frames, for the NGP and the SGP regions
separately. For both regions of the sky, the polarization degree is
small, most often
0.3%. The distributions are very
similar although stars with polarization between 0.3% and 0.5% seem
slightly more numerous in the SGP. The median polarization is 0.11%
in the NGP region and 0.15% in the SGP region. The overall
distribution suggests that virtually every quasi-stellar object with a
polarization higher than 0.6% is intrinsically polarized, in
agreement with previous studies (Berriman et al. 1990;
Lam00). In only five cases (flagged in Table 4), the QSO
polarization is both significant (
0.6 %) and comparable
in degree and angle to the polarization of field stars, suggesting a
probable contamination. Four objects with marginal contamination are
also indicated in that table.
Since the goal of our polarization measurements is to study concentrations of QSO polarization position angles along preferred directions, it is important to verify that the distribution of polarization angles is not significantly contaminated by either the instrumental polarization or the interstellar polarization in our Galaxy.
To verify that the polarization angles are not affected by an
instrumental bias, a first test was done using standard stars with
intrinsic polarization angles distributed in the full [0,
180
]
range (Sect. 2; and Lam00). The excellent
agreement -most often within 1
- between the polarization
angles we measure and those values published in the literature
demonstrates the absence of such a bias, at least for highly polarized
objects.
In order to perform a similar test at lower polarization levels,
typically around 1%, we have measured the polarization of a sample of
13 QSOs previously observed by Berriman et al. (1990),
Schmidt & Hines (1999) and Smith et al. (2002)
using different telescopes and instruments. The targets were selected
to have polarization angles distributed in the full [0,
180
]
range (Table 5). Figure 3 shows the
observed polarization angle
(from Table 4) versus the
published one
(from Table 5). A good
overall agreement is observed, suggesting the absence of an
instrumental bias. However, the correlation is not as good as one
could have expected given the formal uncertainties. This is due to the
fact that we compare unfiltered, white light, measurements to V-band
polarization angles (with some additional noise from possible time
variability). Indeed, while basically constant with wavelength, a
slight dependence of the polarization angle on wavelength (i.e. about
ten degrees between the blue and red parts of the spectrum) is often
observed in low polarization QSOs (Webb et al. 1993;
Antonucci et al. 1996). For two objects, V-band polarization
angle measurements are available in the literature,
for PG 1004+130 (Webb et al. 1993)
and
for 3C 323.1 (Schmidt &
Smith 2000). They are in much better agreement with our V-band
measurements than with the white light data. A comparison of
polarization measurements obtained in the same filter is then needed
to test more accurately for possible instrumental contamination at low
polarization levels.
Table 5: Published "white light'' polarization data for the verification objects.
![]() |
Figure 3:
The measured polarization angle ![]() ![]() ![]() |
Open with DEXTER |
![]() |
Figure 4:
This figure compares, for the NGP region (2002 data), the
QSO polarization angle
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Open with DEXTER |
In order to estimate the effect of the interstellar polarization on
significantly polarized (
%) objects, and namely whether
it can introduce a bias in the distribution of the QSO polarization
angles, we subtract frame by frame (when possible) the Stokes
parameters of the field stars from the QSO ones, both uncorrected for
the systematic
and
.
New
QSO polarization degrees (p') and angles (
)
are then
derived. With such a test, we implicitely assume that the polarization
of field stars correctly represents the interstellar polarization
affecting the QSOs.
In Figs. 4 and 5 we compare the new
polarization angle
to the uncorrected one
,
for
the NGP and the SGP regions separately. Only significantly polarized
QSOs are considered, i.e. those objects with a polarization degree
.
The distribution of the final polarization angle
given in Table 4 is also illustrated. Although a
systematic effect may be noticed, it is small enough to only slightly
modify the distribution of the QSO polarization angles. This is due to
the fact that the field star polarization is most often small
(Fig. 2) such that only a few significantly polarized
QSOs are affected (and, as done in Table 4, the most
discordant objects may be flagged as contaminated).
This test demonstrates that the distribution of the polarization
angles of polarized (
%) QSOs is not significantly
contaminated by the interstellar polarization, and more particularly
after subtracting the systematic correction. But this conclusion is
only valid if the interstellar polarization which affects the QSOs is
not significantly larger than the polarization measured from field
stars.
![]() |
Figure 5:
Same as Fig. 4, but for QSOs from the SGP
region (2000 and 2003 data). For most objects,
![]() ![]() ![]() |
Open with DEXTER |
For some targets of our sample, several polarimetric measurements do exist. MARK 877, the BAL QSO Q2208-1720, and the binary QSO PKS 1145-071 A&B have been observed at two epochs (March and May 2002) and do not show any evidence for significant polarization variability. Also, the measurements for MARK 877 and the BAL QSO J2359-12 are in excellent agreement with the values reported by Berriman et al. (1990) and Brotherton et al. (2001), respectively. The four radio-emitters PKS 2203-215, PKS 2204-54, PKS 2240-260 and PKS 1136-13 were previously observed in white light by Fugmann & Meisenheimer (1988) and Impey & Tapia (1990). Within the uncertainties and given the different wavelength coverages, we find a good agreement with our polarimetric measurements, i.e. no evidence for a significant variability, including for the highly polarized quasar PKS 2240-260.
On the contrary, the polarization level of PKS 1222+037 grew
up to 2.4% between March and May 2002, indicating that this object
might be variable. Our observations also suggest the variability (in
both polarization level and angle) of the BL Lac candidate
PKS 1216-010 (Londish et al. 2002). Indeed,
Visvanathan & Wills (1998) report for this object a
polarization level
% and a polarization angle
which are
significantly different from our values (
% and
). Such a variability is common among
highly polarized quasars and BL Lac objects (see e.g. Rieke et al. 1977; Valtaoja et al. 1991).
New polarization measurements have been obtained for a sample of 203
quasi-stellar objects located in the NGP and the SGP regions with a
final median uncertainty 0.25% on the polarization
degree. 184 measurements are first time measurements. Among these
ones, half of the 42 BAL QSOs show a level of polarization >1% and
12 QSOs have a polarization level higher than 3% (including the BAL
QSO SDSS J1409+0048).
Based on previous measurements found in the literature, we find evidence for a variation of both the polarization level and the polarization angle of the BL Lac candidate PKS 1216-010. We also report a significant variability in a two month period of the polarization of PKS 1222+037. Such a variability is not surprising since this object is reported to have a flat radio spectrum (Teraesranta et al. 2001) which means, in unified schemes, a pole-on view of the AGN with a relativistically beamed polarized emission (Urry & Padovani 1995; Rusk 1990; Antonucci & Ulvestad 1985).
The pair of quasi-stellar objects PKS 1145-071 A&B has been observed at two different epochs. They have polarization levels >0.6% and different polarization angles.
This sample also includes the gravitationally lensed QSO J11319-1231 (Sluse et al. 2003). The lensed nature of this object has been serendipitously unveiled on the polarimetric images obtained during the May 2002 observing run. The global polarization level of this object is smaller than 0.3%, confirming that gravitationally lensed QSOs are not more polarized than other quasi-stellar objects (cf. Hutsemékers et al. 1998; and Lam00).
We have also shown that, if the effect of the interstellar
polarization in our Galaxy onto distant objects may be adequately
represented by the polarization measured from field stars, the
significantly polarized (
%) QSOs show little
contamination in the distribution of their polarization angles.
Acknowledgements
Dominique Sluse acknowledges support from an ESO studentship in Santiago and PRODEX (Gravitational lens studies with HST). Hervé Lamy would like to thank Prof. J. Lemaire and BIRA-IASB for giving him the opportunity to observe in La Silla in March 2002. Hernan Quintana acknowledges partial support from the FONDAP Centro de Astrophysics. This research has made use of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.