A&A 429, L41-L45 (2005)
DOI: 10.1051/0004-6361:200400102
B. McBreen1 - E. Winston1 - S. McBreen2 - L. Hanlon1
1 - Department of Experimental Physics, University
College, Dublin 4, Ireland
2 - Astrophysics Missions Division,
Research Scientific Support Department of ESA, ESTEC, Noordwijk,
The Netherlands
Received 23 June 2004 / Accepted 6 November 2004
Abstract
Lightning in the solar nebula is considered to be one
of the probable sources for producing the chondrules that are
found in meteorites. Gamma-ray bursts (GRBs) provide a large
flux of -rays that Compton scatter and create a charge
separation in the gas because the electrons are displaced from
the positive ions. The electric field easily exceeds the
breakdown value of
1 V m-1 over distances of order
0.1 AU. The energy in a giant lightning discharge exceeds a
terrestrial lightning flash by a factor of
1012. The
predicted post-burst emission of
-rays from accretion
into the newly formed black hole or spin-down of the magnetar is
sufficiently intense to cause a lightning storm in the nebula
that lasts for days and is more probable than the GRB because the
radiation is beamed into a larger solid angle. The giant
outbursts from nearby soft gamma-ray repeater sources (SGRs) are
also capable of causing giant lightning discharges. The total
amount of chondrules produced is in reasonable agreement with the
observations of meteorites. Furthermore in the case of GRBs most
chondrules were produced in a few major melting events by nearby
GRBs and lightning occurred at effectively the same time over the
whole nebula, and provide accurate time markers to the formation
of chondrules and evolution of the solar nebula. This model
provides a reasonable explanation for the delay between the
formation of calcium aluminium inclusions (CAIs) and chondrules.
Key words: gamma rays: bursts - solar system: formation - planetary systems: protoplanetary disks - planetary systems: formation
![]() |
Figure 1:
The path length of ![]() ![]() |
Open with DEXTER |
A charge separation will also occur with pair production because
some positrons annihilate in flight creating a moving excess of
negative charge that leaves behind a positive excess in the gas
(Askaryan 1962; Jelley et al. 1966). The cross-section for
positron annihilation is about 1 Barn/
where
.
About 10% of the positrons with energy E =
400 MeV will annihilate in flight.
![]() |
Figure 2:
The
surface density, ![]() ![]() ![]() ![]() |
Open with DEXTER |
In conventional models it is usually assumed that lightning occurs in the dusty midplane of the nebula (Horanyi et al. 1995; Love et al. 1995). However a GRB will preferentially interact with the outer region of the nebula that is in the direction of the GRB source. Therefore it is necessary to model the vertical structure of the nebula to obtain the surface density perpendicular to the midplane.
In the thin disk approximation the midplane isothermal pressure is
given by (Cameron 1995)
The surface density profile perpendicular to the midplane is plotted in Fig. 2 for r = 1, 3 and 5 AU using the two models. The surface density is reasonably constant in the midplane region and drops by only a factor of 2.7 in the first scale height and by the larger factor of 20 in the second scale height. Approaching the nebula from above the midplane, a path length of 300 g cm-2will reach the midplane at 5 AU, and 0.1 AU above the midplane at 3 AU using the minimum mass model (Figs. 2c and 2b).
To model the charge separation and electric field in the nebula,
we adopt a GRB that gives 106 erg cm-2 with 10% of the
energy between 20 MeV and 100 MeV, which is assumed to be in 65
MeV -rays that yield Compton scattered electrons with
energy of 50 MeV. The incident flux of
-rays is
1013 photons m-2 and is attenuated exponentially in
H2 using a mass absorption co-efficient of
cm2 g-1 (Fig. 3a (i)). The positive
charge also declines exponentially in the same way because each
Compton event creates a positive ion. The electrons travel on
average an additional 10 g cm-2 into the nebula including
only the ionization loss (Fig. 3a (ii)).
The path length is further reduced by a
retarding electric field of 1 V m-1 which is typical of the
breakdown value (Fig. 3a (iii)). The charge excess is the
difference between the two distributions (Fig. 3b). The net
positive charge is confined to a layer of thickness 10 g cm-2 whereas the negative charge is distributed over a much
wider range. The net positive or negative charge is 11% and has
a value of
C m-2. Two percent of the
net negative charge is beyond 300 g cm2 and penetrates
deeply into the nebula.
![]() |
Figure 3:
a) The number of ![]() ![]() |
Open with DEXTER |
Electrical breakdown occurs when a normally insulating gas
suddenly becomes conducting in a strong electric field. The gas
pressure is particularly important because lower pressure reduces
the voltage necessary for the discharge and increases the width of
the discharge channel. Breakdown occurs when the electric field
is strong enough that a free electron accumulates 1 eV of
energy between successive collisions with gas molecules
(Pilipp et al. 1992). This condition is given by
eV where
is the
discharge electric field, n is the number density of gas
molecules and
cm-2 is the collision
cross section.
has a value of
V m-1 for air and
V m-1 for
H2 at atmospheric pressure (Love et al. 1995). The measured
value of
in thunderstorms is about a factor of 10 lower
and this difference is often attributed to energetic runaway
electrons from cosmic rays or radionuclides that prematurely
trigger the discharge (Gurevich et al. 2001). The value of
scales with pressure and has a value of 20 V m-1 to
1 V m-1 at pressures between 10-5 and 5
10-7 of atmospheric pressure, typical of disks in planetary
forming systems.
could have a higher value in dust loaded
regions near the midplane (Gibbard et al. 1997). The Compton
scattered electrons produce ions and electrons that increase the
conductivity of the gas above that caused by cosmic rays and
radionuclides (Desch & Cuzzi 2000; Love et al. 1995). The large
scale and rapid formation of the charge separation prevents
significant discharging by the gas conductivity.
The charge separation described in the nebula is analogous to a
capacitor. The basic equation for a parallel plate capacitor
yields the potential difference
between the plates separated by a distance d. V attains a value of
1014 V for
q = 10-7 C m-2 and a representative
value of d = 0.1 AU. The electric field is
104 V
m-1 and greatly exceeds
by a factor of at least
103 even for a GRB at a distance 10 kpc and
40 for a
similar GRB at the distance to the Large Magellanic Cloud. As
the GRB interacts with the nebula, the charge separation creates a
strong electric field that exceeds
and triggers the
discharge (Dwyer 2003). The duration of the discharge is
estimated at 100 s (Pilipp et al. 1992). The average current in
the channel is
1011 A if half of the excess charge
from an area
flows down the channel in 100 s. The
width of the lightning channel depends on the gas pressure and
has an estimated value of
105 cm assuming it is
limited to a few thousand electron mean free paths
(Pilipp et al. 1992).
The total energy in -rays, over an area comparable in
size to the charge separation of 0.1 AU, gives an upper limit of
1029 erg to the energy dissipated in the channel and this
exceeds a large terrestrial lightning flash by
1012.
We cannot exclude the possibility of repeated strikes over the
lightning channel, a situation that is somewhat analogous to the
stepped leaders and return strokes in terrestrial lightning.
Furthermore there is the possibility that the lightning may
fragment into many channels (Uman 1987). The visible and
ultraviolet radiation from the discharge heats and melts the
precursor grains to form chondrules out to a distance of
109 cm from the discharge channel. The total amount of
chondrules produced in the nebula within a radius of 5 AU is 5
1020 g assuming a GRB with 106 erg cm-2has 105 erg cm-2 in 65 MeV
-rays, 2
1010 erg g-1 to heat and melt the precursor dustballs
and an efficiency of 10-2 to convert the
-ray energy
to chondrules (Jones et al. 2000). The amount of chondrules
produced is too small to account for the total mass of
g in the asteroid belt and the value of
1027 g when the asteroid belt was 300 times larger than at
present. The mass of chondrules can be increased by 3
104 to 1.5
1025 g for a GRB at a distance of
300 pc (
103) with a higher isotropic luminosity of
1053 erg (
10) and an anomalous MeV component as
observed in GRB 941017 (
3). This model is not sufficient
because there is evidence from compound chondrules
(Wasson 1993) and compositional gradients in chondrules
(Wasson & Rubin 2003) that they were melted several times
requiring a repeating process.
The model of GRB emission is not unique and in the case of a
structured jet, where the energy density per unit solid angle
falls away from the axis, the emission is beamed into a larger
solid angle by a factor of about 5 (Zhang & Meszaros 2004). In this
case the post-burst emission is ten times more likely to impinge
on the nebula than the GRB. The post-burst emission of up to
1052 erg in -rays is sufficiently intense to cause a
major lightning storm in the disk that lasts for days or even
weeks and up to 50 such events may occur over the lifetime of the
disk. These fifty events, occurring at a distance of 10 kpc,
will produce 5
1023 g of chondrules
assuming an efficiency of 10-2 for
conversion of
-ray energy to chondrules. The largest
mass of chondrules is produced by the post-burst emission from
the nearest GRB;
a burst 100 pc
distant will produce 1026 g within a radius of 5 AU in a
disk. Strong dependence on the distance between the GRB and the
protoplanetary disk results in a wide range in the mass of
chondrules produced. In the above estimates we have assumed that
the charge separation is not removed by the conductivity provided
by the ions and electrons produced by the Compton scattered
electrons, cosmic-rays and radionuclides. This will only be
correct if the post burst emission is in short duration outbursts
like the GRB emission. The post-burst emission is more likely to
be highly variable in the case of continued and sporadic
accretion into the newly formed Kerr black hole (McBreen et al.
2002).
Soft gamma-ray repeaters (SGRs) are also a possible
source of lightning in the nebula. The energy that drives the
giant flares (>1044 erg) such as the 1979 March 5 event
from SNR N49 may be caused by a sudden large scale arrangement of
the magnetic field which releases magnetic energy
(Thompson & Duncan 1996). The extreme possibility is that the
entire dipole moment is destroyed in a single event releasing
1047 erg (Eichler 2002). The rate of such
events could be as high as the rate of magnetar production
yr-1 and
104 such events could occur over
the lifetime of the nebula. About 10 to 100 of these SGR
explosions should be close enough to generate lightning in the
disk and each one produce a small amount of chondrules, but the
overall contribution of SGRs is much smaller than that of GRBs.
Other nearby and less variable -ray sources such as
quasars, microquasars and powerful X-ray binaries (Mirabel &
Rodriguez 1999) might be expected to generate charge separation
and lightning. They require a much longer time of
105 s
to generate an electric field that can exceed
,
but the
gas conductivity may limit the electric field to below this value.
There is sufficient energy in these sources to produce large
amounts of chondrules provided a method is found to limit the gas
conductivity. The same limitation has been noted in other models
of charge separation and lightning in the protoplanetary disk
(Desch & Cuzzi 2000; Gibbard et al. 1997; Love et al. 1995).
Compound chondrules consist of a primary that solidified first and one or more secondaries attached to the primary (Wasson & Rubin 2003; Wasson 1993). Sibling compound chondrules have very similar textures and compositions and most, perhaps all, consist of chondrules melted in the same event. If this event is identified with a nearby GRB, the chondrules would have been produced all across the disk and should provide a simultaneous time marker between sibling chondrules in different meteorites. If the chondrules were produced by GRBs, the differences between the composition of meteorites are due to compositionally segmented regions of the nebula. The independent compound chondrules probably were produced in two separate events and it may be possible to determine the order and frequency of the GRB events from the meteorite record.
The magneto-rotational instability (MRI) provides an understanding of radial mixing and turbulence in the disk (Balbus & Hawley 1998). Turbulence can concentrate dust particles of a particular size to spatial densities well above their background values (Wood 1997; Cuzzi et al. 2001). A large amount of chondrules can then be produced by lightning and provide an explanation for the large quantity of compound chondrules in meteorites. The magnetic field in the nebula must be well coupled to matter for MRI to be effective and this condition was satisfied close to the Sun and beyond 10 AU where cosmic ray ionization may suffice to maintain a significant amount of ionization. The magnetic field during chondrule formation is not well constrained by the meteoritic evidence and seems to have a value between 1 and 10 Gauss (Jones et al. 2000; Sugiura et al. 1979). A magnetic field of this magnitude is significant because it would channel Compton scattered electrons into regions of enhanced magnetic field, such as MRIs, and possibly cause lightning between regions in the disk which is analogous to cloud to cloud lightning in the Earth's atmosphere.
The 26Al/27Al ratio of CAIs in meteorites has a value of
5
10-5 whereas in chondrules the ratio has a much
smaller value (Cameron 1995; Jones et al. 2000). The simplest
explanation is that there was an interval of at least a million
years between the formation of CAIs and chondrules. Chondrules
should have formed preferentially late in the development of the
disk after the Sun had stripped away most of the gas and allowed
the
-rays to penetrate closer to the midplane. This
effect is more important in models of the disk with more than the
minimum mass as shown in Fig. 2. The penetration of the disk by
-rays is easier beyond the snowline at about 5 AU because
the disk is less massive. Chondrules produced beyond about 5 AU
may have formed earlier and hence could contain 26Al.
GRBs in the galaxy affect the Earths atmosphere (Kurt & Zaidel 1996; Thorsett 1995; Scalo & Wheeler 2002) and these events may be responsible for mass extinctions (Thomas et al. 2004; Melott et al. 2004; Dar et al. 1998). Fortunately the rate of GRBs is very low in our galaxy. However a GRB can reveal protoplanetary systems in other galaxies by transient infrared emission from the melting chondrules and optical emission from the gas (McBreen & Hanlon 1999; Duggan et al. 2003). These events may be detectable for hundreds of years after the GRB when the expanding shell or cones of radiation interacts with protoplanetary systems.