Table 1: Optimal constant values for the p-factor for different cases of interest. $v_{\rm rad\vert gauss}$ and $v_{\rm rad\vert min}$ are the radial velocity deduced from theoretical line profiles using the Gaussian and minimum method respectively. Estimator (1) and (2) of the constant projection factor correspond to Eqs. (4) and (5) respectively. In each case the pulsational velocity $v_{\rm puls}$ and radius $\Delta R_{\rm puls}$ used are indicated.
  Estimator 1 Estimator 2
  $v_{\rm puls_{(s)}}=v(\tau_l=2/3)$ $\Delta R_{\rm puls_{(s)}}=\int{v(\tau_l=2/3)}$
$v_{\rm rad\vert gauss}$ 1.35 $\pm$ 0.01 1.32 $\pm$ 0.01
$v_{\rm rad\vert min}$ 1.31 $\pm$ 0.01 1.30 $\pm$ 0.01
  $v_{\rm puls_{(il)}}=\diffp{R(\tau_l=2/3)}{\phi}$ $\Delta R_{\rm puls_{(il)}}=\Delta R(\tau_l=2/3)$
$v_{\rm rad\vert gauss}$ 1.33 $\pm$ 0.01 1.32 $\pm$ 0.01
$v_{\rm rad\vert min}$ 1.30 $\pm$ 0.01 1.29 $\pm$ 0.01
  $v_{\rm puls_{(ic)}}=\diffp{R(\tau_{\rm c}=2/3)}{\phi}$ $\Delta R_{\rm puls_{(ic)}}=\Delta R(\tau_{\rm c}=2/3)$
$v_{\rm rad\vert gauss}$ 1.28 $\pm$ 0.01 1.27 $\pm$ 0.01
$v_{\rm rad\vert min}$ 1.24 $\pm$ 0.01 1.24 $\pm$ 0.01


Source LaTeX | All tables | In the text