A&A 428, 241-246 (2004)
DOI: 10.1051/0004-6361:20041398
P. B. Babadzhanov - N. A. Konovalova
Institute of Astrophysics, Tajik Academy of Sciences, and Isaac Newton Institute of Chile, Tajikistan Branch; Bukhoro Str. 22, Dushanbe 734042, Tajikistan
Received 3 June 2004 / Accepted 13 July 2004
Abstract
Among 11 bright Geminid meteors photographed at the Institute of
Astrophysics, Tajik Academy of Sciences (Dushanbe, Tajikistan), 3 displayed
distinct high-frequency (more than 100 Hz) pulsations of brightness, or
flickering. As a rule, for these Geminids, pulsations of brightness begin
at the middle of their photographed path, at the height of about 75 km,
and last until the end of the visible trajectory. Different possible meteoroid
ablation mechanisms causing the flickering of the bright Geminids are
discussed. The obtained results allow us to conclude that the observed
high-frequency flickering of Geminid fireballs may be explained by an
autofluctuating mechanism of the meteoroid ablation, i.e. by melting and
cyclic ablation of the surface-layer of meteoric matter with the
period corresponding to the observed period of the flickering.
Key words: meteors, meteoroids
The Geminid meteor shower, reaching the peak activity on 13 December, is one of the strongest annual meteor phenomena, with the shortest orbital period (1.6 years) and the shortest perihelion distance (0.14 AU). During previous decades the astronomers investigating the Geminids usually came to the conclusion that meteoroids of this shower are more dense than meteoroids of others showers. According to the data of photographic observations of fireballs and taking into account "gross fragmentation'' of meteoroids in the atmosphere, Ceplecha & McCrosky (1992) concluded that the bulk density of Geminid meteoroids is equal to 3-4 g/cm3. Using high-performance observations of 41 Geminid meteors, Spurny (1993) has obtained the same estimation of the density of Geminid meteoroids and concluded that probably they have an asteroidal origin. Gustafson (1989) suggested that the Geminids are flakes of a relative high density porous material, pieces of a very thin mantle that may have formed on Phaethon. Our determination of the bulk density of meteoroids producing bright photographic meteors, based on the analysis of the light curves of meteors and taking into account the quasi-continuous fragmentation of meteoroids in the Earth's atmosphere, has shown that the mean bulk density of Geminid meteoroids is equal to 2.9 g/cm3 (Babadzhanov 2002). It is possible that the high density of Geminid meteoroids in comparision with other meteoroids is due to the small perihelion distance of the Geminid orbit, i.e. repeated transit of Geminid meteoroids very close to the Sun.
Except for high density, another distinctive feature of bright Geminids are high-frequency (up to several hundreds Hz) pulsations of brightness seen since the first years of systematic photographic observations of meteors. For example, according to the data of Astapovich (1958), bright flickering Geminids were photographed in the Harward observatory (USA) in 1933 (December 14) and 1934 (December 12). The pulsations of brightness were observed for 6 of 12 Geminid fireballs photographed according to the Meteoroid Observation and Recovery Program (MORP) of Canada (Halliday 1988). In scientific publications there are examples of meteors whose flickering frequency varies from several Hz up to hundreds of Hz (low-frequency pulsations) (Kramer 1966; Getman 1993; Beech & Brown 2000; Konovalova 2003), but the flickering frequency of Geminids is almost ten times as much, the flickering starts suddenly, approximately from the middle of a meteor trajectory and remain steady down to its end. Thus the frequency of flickerings increases in the process of penetration of the meteoroid into the atmosphere, and the amplitude of flickering remains practically nearly constant during the whole visible path.
In the papers devoted to investigation of the meteor flickering phenomenon (see, for
example, Kramer 1966) it has been underlined that the appearance of meteor
flickering may be expected only for meteors produced by massive
meteoroids penetrating deeply into the Earth's atmosphere. However, the analysis
of light curves of 566 meteors photographed in 1957-1983 in Dushanbe
shows that not all the meteors produced by massive meteoroids and deeply penetrating
into the Earth's atmosphere display regular pulsations of brightness. So,
even for the brightest meteors of Perseids, -Capricornids, Orionids
and the majority of bright
sporadic meteors produced by meteoroids of masses similar to masses of Geminids,
the high-frequency pulsations of brightness are not observed.
The presence of one or several strong flares of brightness is typical creating
the effect of low-frequency pulsations as in the case of Taurids (Konovalova 2003).
Pulsations of brightness for Leonids and
-Aquarids are not observed at all,
although the meteors of these showers are very bright.
The appearance of high-frequency flickering for Geminids and low-frequency ones for the above-mentioned showers and sporadic meteors is apparently connected to the ablation mechanism of meteoroids, which in turn directly depend on the physical properties of meteoroids, mainly on their composition, structure and strength.
Oleak (1964) lists the following main mechanisms of meteor flickering:
Successive detachment of wreckages, i.e. the "gross fragmentation'' of meteoroids can cause low frequence pulsations of the meteor brightness (Bronshten 1981; Getman 1993; Konovalova 2003). Below, at first we consider the rotation of meteoroids and the consequences of its development, and then the autofluctuating character of the evaporation process of meteoroids.
In the periods of maximum activity of the Geminid meteor shower, with
small cameras (D:F = 1:2.5, F = 250 mm) of the meteor patrol of the
Institute of Astrophysics of Tajik Academy of Sciences (Dushanbe),
photos were taken of three flickering fireballs belonging to this shower
and designated 643881, 761683 and 821691. The photographs of the
Geminids were obtained in the guiding camera and in undriven ones
with a rotating shutter at the Gissar observatory
and the corresponding station Kipchak, located 34 km away.
The Geminid 821691 was also photographed by the long-focus camera MK-75
(D:F = 1:3.5, F = 750 mm) using the
method of instantaneous exposure (
s) and
29 instantaneous
images of the meteor were obtained at 0.02 s intervals. For the photography
of meteors highly sensitive panchromatic films of
cm size
were used.
The data of radiants, zenith angles, velocities, heights, masses and orbital
elements were published earlier (Babadzhanov et al.
1998). The photographic photometry was conducted
on meteor negatives obtained from undriven cameras. The visual magnitudes
of Geminids were determined in comparision with diurnal star trails, then
the transition from visual magnitudes to absolute ones
was performed by
the technique described by Ivanikov (1957). The initial mass of the
meteoroids was calculated with the formula:
![]() |
(1) |
In our paper (Babadzhanov & Konovalova 1986, 1987) the preliminary
results of the analysis of radiation features of three
bright Geminids, showing regular high-frequency
(
Hz) pulsations of brightness were given.
The observed light curves of these Geminids are shown in Fig. 1.
In Fig. 2 for the Geminid 821691 we show the variation of velocity
V versus height h.
![]() |
Figure 1: Observed light curves of Geminids: a) 643881; b) 761683; c) 821691. |
Open with DEXTER |
![]() |
Figure 2: Velocity versus height variations for the Geminid 821691. |
Open with DEXTER |
As seen from the light curves of the three Geminids, the high-frequency
flickering arises suddenly, approximately from the middle of the
visible trajectory. The amplitude of the brightness pulsations
varies from 0.25 up to 1.0 mag thus with no dependence on height.
In the first half of the meteor path no flickering is observed, although
the meteor brightness is
sufficient: for example at the height of 80 km the brightness of the
Geminid meteors 643881, 761683 and 821691 is -3.0,
-2.6 and -3.8 mag (the photographic camera system has a limiting
magnitude of about 0 mag). The frequency of the pulsations
measured on the photos obtained with a rotating shutter continuously
grows with penetration of the meteoroids deep into the atmosphere for all
the three Geminids, approximately from a hundred Hz up to several hundreds
Hz at the end of the visible trajectory. The graphs of
variations of observable pulsations frequency
versus height h are shown in Fig. 3, where the circles
mark the values of
obtained as a result
of measurement of the distance between the two adjacent pikes of pulsations
as a function of time, which is known with high accuracy for each
end of the meteor shutter break.
![]() |
Figure 3: Observed (circles) and calculated (solid line) frequency of flickering versus height variations for the Geminids: a) 643881; b) 761683; c) 821691. |
Open with DEXTER |
Table 1: Observed and calculated data of the Geminid meteors.
The analysis of photos of about 200 bright meteors (brighter than absolute magnitude -2.5) from the Dushanbe archive has shown that only 3 meteors with high-frequency pulsations of brightness of more than 100 Hz (flickering) are revealed, and all of them are Geminids. Thus, from 11 photographed Geminids of brighter than -2.5 mag, the flickering fireballs form 27%. Here the Geminids are not included that have some flares along the meteor trajectory. Halliday (1963) showed data of flickering bright -8 mag Geminids photographed on December 13, 1960 in Canada. Halliday (1963, 1988) interpreted the flickering of Geminids as an oscillation of a relative thin meteoroid in flight.
The high-frequency pulsations (flickering) of meteors is
rather infrequent. According to Ashgabad datas from 1942-1945 such
meteors form 1% (Astapovich 1958). On the data of photographic
observations of meteors in Dushanbe in 1957-1983 the
high-frequency pulsating meteors form 1.5% of all meteors brighter -2.5 mag photographed by the meteor patrol. Meteors with low-frequency
pulsations of brightness (from several Hz up to several tens of Hz) are
observed more often and they belong mainly to Orionids, Perseids,
Taurids or -Capricornids showers and to the
sporadic background. This implies
that the flickering of the Geminids is a distinctive feature of this
shower, probably connected to the ablation mechanism of the meteoroids.
This is confirmed by the Geminid fireball photos obtained
by the method of instantaneous exposure on the long-focus cameras
MK-75. The instantaneous images of Geminids have a
drop-shaped form with a well-marked wake reaching from 90 up
to 385 m in length. Babadzhanov & Kramer (1965), Babadzhanov (1983),
Babadzhanov & Konovalova (1983) have shown that such instantaneous images of meteors
may be a result of separation of fragments or drops melting
from the surface of the meteoroid, which represents a kind of quasi-continuous
fragmentation of meteoroids (Lebedinets 1980).
A. Analysis of mechanisms producing rotation of meteoroids both in interplanetary space and in the Earth's atmosphere has been carried out by many researchers. Opik (1958), Dolginov (1968), Paddack (1969), Bronshten (1981), Olsson-Steel (1987), Kruchinenko (1995), Beech & Brown (2000), Beech (2001, 2002) assume that owing to mutual collisions in inteplanetary space or under the solar "windmill'' mechanism the majority of meteoroids generating meteors of optical and radar ranges, up to the entrance in the Earth's atmosphere have fast rotation. Confirmation of meteoroid rotation in the Earth's atmosphere is given by meteorites' tracks of rotation, which are impressed on their crust as a curved stream of melted matter (Krinov 1963). Assuming that flickering Geminids are produced by meteoroids which were spun even before entry into the Earth's atmosphere and gained some angular rate of rotation in space, Beech (2002) estimated the time since separation of these meteoroids from the near-Earth object 3200 Phaeton, which is associated with the Geminid stream (Babadzhanov & Obrubov 1993).
Having conducted the analysis of mechanisms producing the rotation of meteoroids, Kruchinenko (1995) came to the conclusion that owing to mutual collisions in interplanetary space, the majority of meteoroids producing meteors of optical and radar ranges have fast rotation at the Earth entry, but large bodies having small geocentric velocities and producing meteorites possess a slow rotation. But Dolginov (1968) showed that for particles of meteoric range the effect of this mechanism is vanishingly small, so that for acquisition of noticeable rotation by a meteoroid even of mass 10 -3 g the period required is more than the lifetime of the Metagalaxy. However, if the particle, which already had a rotation acquired in inteplanetary space, enters the atmosphere, then because of the great deceleration in dense atmosphere, it does not gain stationary rotation (Dolginov 1968).
Beech & Brown (2000) and Beech (2002) explain the observed high-frequency brightness pulsations of Geminids also by meteoroid rotation acquired in space because of collisional fragmentation, since the effect of the "solar windmill'' (Radzievsky 1954; Paddack 1969) can result in negligible rotation rates of bodies of centimetre size.
Levin (1956), Bronshten (1981), Adolfsson & Gustafson (1994),
Kruchinenko (1995) showed that the difference in the height of appearance of
meteors produced by non-rotating and highly-rotating meteoroids is
approximately equal to
10 km, i.e. the meteors produced by a rotating meteoroid appear
10 km lower. To make the concrete conclusion about rotation of the
three Geminids under consideration we calculate the theoretical heights
of their
appearance. For that we use the equation describing atmosphere density
at the height of the beginning h0 of intensive evaporation of the
surface for non-rotating meteoroids defined from the solution of the problem
of meteoroid heating in the high atmosphere in the
preablation period (Levin 1956; Bronshten 1981):
![]() |
(2) |
![]() |
(3) |
In the calculations of
the following values
of quantities from the Eqs. (2) and (3) were assumed
for the case of a
stony meteoroid (Levin 1956):
erg/cm s deg;
c = 107 erg/g deg;
at the height of beginning of
intensive vaporization for the cm-size meteoroids and
g/cm3for Geminid meteoroids (Babadzhanov 2002).
The values of the warming-up depth x0calculated according to formula (3) are in the range of 0.044-0.060 cm.
The theoretical heights of the appearance h0 of Geminid meteors,
corresponding to the calculated atmospheric densities
,
according to formula (2), are
presented in Table 1, from which we see that the mean value of the
theoretical beginning height h0 of Geminids under investigation
is 90.7 km, very close to the mean value of their observable
beginning height,
.
The
result allows us to conclude that the given Geminid meteoroids
when entering in atmosphere do not rotate.
B. The possibility of rotation for Geminid meteoroids in the Earth's
atmosphere can be considered under the following scheme too:
a non-rotating meteoroid enters the atmosphere and
gains angular rotation with rate
under the
action of the molecular flow of air
(Dolginov 1968; Obrubov & Konovalova 1982; Kruchinenko 1995):
![]() |
(4) |
The meteoroid is considered rotating if its rotation period
is much less than
the typical ablation time
:
![]() |
(5) |
![]() |
(6) |
Considering meteoroid rotation as the cause of fireball flickering, Novikov & Sokolov (2001) and Beech (2001) obtained the equations describing the light curve of the meteor. In these equations it is assumed that a rotating meteoroid of elipsoidal or cubic form modulates its head-on cross-section during its flight in the atmosphere. From the figures given in these papers (Novikov & Sokolov 2001, Fig. 2; Beech 2001, Figs. 1 and 2) it is visible, that a) theoretically, the pulsations of brightness arise from the very beginning of the visible meteor trajectory, and b) the amplitude of pulsations decreases monotonically. On the photographs of the three Geminids under investigation the steady, clearly discernible pulsations of brightness arise "suddenly'', almost from the middle of the meteor trajectory and this "suddenness'' is not connected to poor brightness of meteors in prior parts of trajectories.
The observable amplitude of flickering does not vary during the penetration of Geminid meteoroids into the atmosphere, remaining within the limits of 0.25-1 mag. These changes have no systematic character which could indicate meteoroid rotation with a variable cross-sectional area.
All these facts, together with the results of analyses of the capability of rotation of Geminid meteoroids in the Earth's atmosphere, allow us to suggest an explanation of the observable high-frequency flickering of Geminids: the autofluctuation mechanism of ablation of the meteoroid.
The autofluctuation mechanism occurs when the pressure of saturated vapours
of meteor matter and the outer pressure regulate each other automatically
(Oleak 1964). For this purpose it is necessary to solve the heat
conduction equation
![]() |
(7) |
![]() |
(8) |
During the passage through the atmosphere, for a unit of time per unit surface
the meteoroid receives the heat
.
Considering the atmospheric density equal to
,
where
,
we have:
![]() |
(9) |
Taking into account Eq. (9), it is possible to find the following solution
of the Eq. (7) at boundary conditions (8) (Levin 1956; Kramer 1966;
Bronshten 1981):
![]() |
(10) |
For the Geminids under investigation, the quantity
is small
enough
,
so it may be supposed that
and
.
Then from the
Eq. (10) it is possible to find the following expression for the
period of flickering
:
![]() |
(11) |
According to Eq. (11), for several points of the meteor trajectories
with known
and V we calculated the theoretical periods of the Geminid
fireball flickering. For calculations the following values of quantities
included in Eq. (11) were used for stony matter (Levin 1956;
Bronshten 1981):
erg/cm s deg,
,
B = 12.5,
,
c = 107 erg/g deg and
g/cm3.
At the beginning of flickering the calculated values of the flickering
periods are in good accordance with the observed ones for the following
values of the heat transfer coefficient:
for the meteor
643881,
for the meteor 761683 and
for
the meteor 821691. But for these values of
,
a close coincidence
of the calculated and observed frequency of flickering is found only
for the meteor 643881 (Fig. 3a, solid line), which is probably
related to the lower
increase in the flickering frequency (approximately from 120 Hz
to 320 Hz) than in the case of the two other Geminids. For the meteors 761683 and
821691 the discrepancy between calculated and observed values of flickering
frequency become more and more considerable as a meteoroids penetrate deep
into the atmosphere.
It is possible to assume that this discrepancy is connected to the change of
the heat transfer coefficient along the path of the meteors 761683 and 821691.
Bronshten (1981) holds that for bright fireballs the rise of
at the
end of the meteor trajectory is caused by substantial deceleration of a meteoroid
at the end part of its trajectory. This increases the heat transfer coefficient
because when the velocity is lost, shielding of the meteoroid by vapours is
decreased.
Representing the variation of the heat transfer coefficient
versus
the height h of a meteor by the exponent dependence:
![]() |
(12) |
The correspondence of the calculated flickering frequency
to the observed ones and their rise
as the Geminid meteoroids penetrate deep in the atmosphere allows us to conclude
that high-frequency (
Hz) pulsations of Geminid brightness
i.e. the flickering of the bright Geminids may be explained by the
autofluctuation mechanism of meteoroid ablation in the Earth's atmosphere.
An analysis is carried out of observed features of radiation of three bright Geminid meteors manifested as regular high-frequency pulsations of brightness (flickering). The high-frequency flickering phenomenon was observed in 1.5 % of all meteors brighter than -2.5 mag photographed in Dushanbe.
The Geminid heights of appearance were calculated for the case of non-rotating meteoroids. As is known (Levin 1956; Bronshten 1981; Adolfsson & Gustafson 1994; Kruchinenko 1995), the appearance heights of meteors produced by non-rotating meteoroids are approximately 10 km higher than those produced by rotating ones. The calculated mean value of the beginning heights of the three Geminids equal to 90.7 km is very close to the mean value of their observed heights of appearance, equal to 91.4 km. The obtained results allow us to conclude that the Geminids under consideration did not rotate when entering the Earth's atmosphere.
The possibility is examined meteoroids gaining of rotation in the
Earth's atmosphere owing to the fluctuating action of oncoming air molecules
on different sides of the meteoroid centre of mass. It is derived that
at the heights where the flickering of the Geminid fireballs were observed,
the condition of "fluctuation" rotation is realized for the particles
of mass
g. Such particles produce the meteors
recorded by radar observations,
but meteoroids of centimetre sizes producing bright Geminid fireballs
cannot gain rotation in this way.
To explain the observed flickering phenomenon of three bright Geminids the autofluctuating mechanism of meteoroid ablation is supposed where the saturated vapors emitted and the outer pressure regular each other automatically.
The results obtained permit us to conclude that the observed high-frequency
pulsations (
Hz ) of brightness of three Geminid fireballs
may be explained by an
autofluctuating drop of the melting surface layer of a meteoroid, which has
a cyclic character with a period corresponding to the observed period of
the fireball flickering.
Acknowledgements
The authors would like to express their gratitude to the anonymous reviewer for useful comments. The annotation of the Language editor of the A&A Dr. Martine Ustin is also appreciated.