Table 7: Approximation for the obliquity of the Earth, following Eq. (33). This expression is not strictly quasiperiodic, because of the presence of the dissipative term p1 in the evolution of the precesion frequency (33).
 k    $\nu'_k$ (''/yr)  P (yr)  a'k  $\phi'_k$ (d)
1   p + s3   31.626665 40 978 0.582412  86.645
2   p + s4   32.713667 39 616 0.242559  120.859
3   p + s6   24.124241 53 722 0.163685  -35.947
4   $ p + \nu_6 ~$ 32.170778 40 285 0.164787  104.689
5   $ p + \nu_{10} ~$ 31.081475 41 697 0.095382  -112.872
6   $ p + \nu_{20} ~$ 31.493347 41 152 0.094379  60.778
7   p + s6+g5-g6 0.135393 9 572 151 0.087136  39.928
8   p + s2   43.428193 29 842 0.064348  -15.130
9   p + s1   44.865444 28 886 0.072451  -155.175
10    31.756641 40 810 0.080146  -70.983
11   $ p + \nu_{13} ~$ 31.365950 41 319 0.072919  10.533
12    32.839446 39 465 0.033666  -31.614
13    32.576100 39 784 0.033722  77.554
14    32.035200 40 455 0.030677  71.757
15   $ p + \nu_{8} ~$ 43.537092 29 768 0.039351  145.835
16   $ p + \nu_{7} ~$ 43.307432 29 926 0.030375  160.109
17   $ p + \nu_{9} ~$ 43.650496 29 690 0.024733  144.926
18    31.903983 40 622 0.025201  -173.656
19    30.945195 41 880 0.021615  -144.933
20    23.986877 54 030 0.021565  -79.670
21    24.257837 53 426 0.021270  -178.441
22    32.312463 40 108 0.021851  -24.566
23    44.693687 28 997 0.014725  124.744


Source LaTeX | All tables | In the text