Table 3: Sensitivity of the abundances of C, S, Zn and Cu to changes of 100 K in effective temperature, 0.3 dex in gravity and metallicity, and 0.5 km s-1 in microturbulence.
  Star HD 22049 HD 168746 HD  136118
  ( $T_{\rm eff}$; $\log {g}$ ; [Fe/H] ; $\xi_t$) (5073; 4.43; -0.13; 1.05) (5601; 4.41; -0.08; 0.99) (6222; 4.27; -0.04; 1.79)

C:
$\Delta T_{\rm eff}=\pm100$ K $\mp0.09$ $\mp0.07$ $\mp0.05$
S: $\Delta T_{\rm eff}=\pm100$ K $\mp0.10$ $\mp0.10$ $\mp0.05$
Zn: $\Delta T_{\rm eff}=\pm100$ K $\pm0.03$ $\pm0.04$ $\pm0.05$
Cu: $\Delta T_{\rm eff}=\pm100$ K $\pm0.03$ $\pm0.05$ $\pm0.05$
  Star HD 10697 HD 16141 HD 28185
  ( $T_{\rm eff}$; $\log {g}$ ; [Fe/H]; $\xi_t$) (5641; 4.05; 0.14; 1.13) (5801; 4.22; 0.15; 1.34) (5656; 4.45; 0.22; 1.01)

C:
$\Delta \log{g}=\pm0.3$ dex $\mp0.10$ $\mp0.10$ $\mp0.10$
S: $\Delta \log{g}=\pm0.3$ dex $\mp0.10$ $\mp0.10$ $\mp0.10$
Zn: $\Delta \log{g}=\pm0.3$ dex $\pm0.07$ $\pm0.07$ $\pm0.06$
Cu: $\Delta \log{g}=\pm0.3$ dex $\pm0.02$ $\pm0.03$ $\pm0.03$
  Star HD 6434 HD 95128 HD 4203
  ( $T_{\rm eff}$; $\log {g}$ ; [Fe/H]; $\xi_t$) (5835; 4.60; -0.52; 1.53) (5954; 4.44; 0.06; 1.30) (5636; 4.23; 0.40; 1.12)

C:
$\Delta\rm [Fe/H] =\pm0.3$ dex $\mp0.03$ $\mp0.02$ $\mp0.02$
S: $\Delta$[Fe/H] $=\pm0.3$ dex $\mp0.00^1$ $\mp0.00^1$ $\mp0.00^1$
Zn: $\Delta$[Fe/H] $=\pm0.3$ dex $\mp0.20$ $\mp0.20$ $\mp0.20$
Cu: $\Delta$[Fe/H] $=\pm0.3$ dex $\mp0.30$ $\mp0.20$ $\mp0.20$
  Star HD 49674 HD 73256 HD 19994
  ( $T_{\rm eff}$; $\log {g}$ ; [Fe/H]; $\xi_t$) (5644; 4.37; 0.33; 0.89) (5518; 4.42; 0.26; 1.22) (6190; 4.19; 0.24; 1.54)

C:
$\Delta \xi_t=\pm0.5$ km s-1 $\mp0.01$ $\mp0.01$ $\mp0.01$
S: $\Delta \xi_t=\pm0.5$ km s-1 $\mp0.00^1$ $\mp0.00^1$ $\mp0.00^1$
Zn: $\Delta \xi_t=\pm0.5$ km s-1 $\mp0.10$ $\mp0.10$ $\mp0.10$
Cu: $\Delta \xi_t=\pm0.5$ km s-1 $\mp0.10$ $\mp0.10$ $\mp0.10$
1 These sensitivities are based on the method described in Sect. 3. The values can be slightly
larger if more explicit calculations are carried out.

Source LaTeX | All tables | In the text