...N[*]
The C2N data are now available at the Cologne Database for Molecular Spectroscopy (www.cdms.de, see Müller et al. 2001).
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... envelope[*]
See for example the SiC2 mapping of IRC+10216 by Gensheimer et al. (1995).
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...N[*]
These are the lines at 129 980.48 MHz, 200 914.8 MHz, and 248 190.2 MHz.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... of[*]
The formula was derived using Eq. (1) from Turner (1991).
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... function[*]
The partition function for a temperature T has been calculated by $Q(T)=\alpha \cdot T^{\beta}$, where $\alpha$ and $\beta$ are determined by the Q(Ti) values given by the Pickett program. For the C2N radical $\alpha =$ 7.1 and $\beta =$ 1.2 .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...12[*]
Taking the temperature uncertainty $\pm$4 K into account we get $N_{\rm T}=3.5{-}5.6 \times 10^{12}$ cm-2.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Copyright ESO 2004