Table 9: Supposing a homogeneous distribution of the PAH molecules in a halo around the central star, with a radius of the size of the ISO-SWS beam (11 $^{\prime \prime }$) at the appropriate distance, the PAH particle density $\rho $ is computed based on the $L_{{\rm PAH}}/L_{{\rm uv}}$ ratio. All objects in which PAH emission is detected are adopted in this table and are listed according to decreasing PAH-over-UV luminosity.
Does PAH emission emanate from a halo?
Object Group $L_{{\rm PAH}}/L_{{\rm uv}}$ $\rho $
      [ $\hbox{cm}^{-3}$]

Elias 3-1
I 0.36 5.51 10-4
RR Tau II $2.5\times 10^{-2}$ $3.82\times 10^{-5}$
HD 34700 I $1.1\times 10^{-2}$ $8.13\times 10^{-5}$
HD 97048 I $1.1\times 10^{-2}$ $1.51\times 10^{-5}$
HD 34282 I $1.0\times 10^{-2}$ $6.21\times 10^{-6}$
VX Cas II $7.7\times 10^{-3}$ $3.00\times 10^{-6}$
HD 169142 I $6.8\times 10^{-3}$ $1.14\times 10^{-5}$
HD 100546 I $6.4\times 10^{-3}$ $1.51\times 10^{-5}$
HD 179218 I $5.5\times 10^{-3}$ $5.60\times 10^{-6}$
HD 100453 I $5.2\times 10^{-3}$ $1.14\times 10^{-5}$
HD 95881 II $4.2\times 10^{-3}$ $8.70\times 10^{-6}$
Wra 15-1484 II $3.5\times 10^{-3}$ $1.14\times 10^{-6}$
HD 139614 I $3.3\times 10^{-3}$ $5.78\times 10^{-6}$
VV Ser II $2.6\times 10^{-3}$ $1.93\times 10^{-6}$
AB Aur I $2.2\times 10^{-3}$ $3.87\times 10^{-6}$
HD 142666 II $2.0\times 10^{-3}$ $3.42\times 10^{-6}$
HD 135344 I $1.6\times 10^{-3}$ $2.86\times 10^{-6}$
CD-42$^\circ $11721 I $1.3\times 10^{-3}$ $8.16\times 10^{-7}$
HD 144432 II $9.8\times 10^{-4}$ $1.65\times 10^{-6}$
BD+40$^\circ $4124 I? $9.3\times 10^{-4}$ $2.31\times 10^{-7}$
HD 31648 II $8.5\times 10^{-4}$ $1.58\times 10^{-6}$
HD 163296 II $7.1\times 10^{-4}$ $1.42\times 10^{-6}$
HD 142527 I $6.9\times 10^{-4}$ $1.15\times 10^{-6}$
HD 141569 II $5.3\times 10^{-4}$ $1.31\times 10^{-6}$
MWC 1080 I $1.4\times 10^{-4}$ $1.54\times 10^{-8}$
MWC 297 III $6.8\times 10^{-5}$ $6.64\times 10^{-8}$
HD 200775 I $3.1\times 10^{-5}$ $1.72\times 10^{-8}$


Source LaTeX | All tables | In the text