Table 1: Values of several stellar models. Nos. 1-3 are unevolved MS stars, 4 is a remnant of thermal timescale mass transfer of an evolved MS star with an initial mass of $ 1.5~ M_{\hbox{$\odot$ }}\protect $, an initial central hydrogen abundance of $ 0.06\protect $, an initially $ 0.6~ M_{\hbox{$\odot$ }}\protect $ white dwarf primary, $ \bar{\eta }=0.25\protect $, and subsequent mass loss driven by strong braking according to Verbunt & Zwaan (1981) using $ f_{\rm {VZ}}=1\protect $. No. 5 is similar but with an initial mass of $ 3~ M_{\hbox{$\odot$ }}\protect $, an initial central hydrogen abundance of  $ 0.41\protect $, an initially $ 1.4~ M_{\hbox{$\odot$ }}\protect $ neutron star primary, and $ \bar{\eta }\protect $is determined by an Eddington accretion rate of $ 2\times 10^{-8}~ M_{\hbox{$\odot$ }}/\rm {yr}\protect $, otherwise $ \bar{\eta }=1\protect $. No. 6 is a giant.
Model No. 1 2 3 4 5 6
$ \vphantom {\sqrt{0}}X_{\rm {c}} $ 0.71 0.71 0.71 0.05 0.36 0
$ \vphantom {\sqrt{0}}M_{2}/M_{\hbox{$\odot$ }} $ 0.3 0.5 0.8 0.45 0.60 0.8
$ \vphantom {\sqrt{0}}R_{2}/R_{\hbox{$\odot$ }} $ 0.284 0.436 0.694 0.695 0.755 25.81
$ \vphantom {\sqrt{0}}\log T_{0}/\rm {K} $ 3.552 3.590 3.705 3.648 3.738 3.582
$ \vphantom {\sqrt{0}}\log L/L_{\hbox{$\odot$ }} $ -1.93 -1.41 -0.54 -0.77 -0.34 2.10
$ \vphantom {\sqrt{0}}M_{\rm {ce}}/M_{2} $ 1.0 0.23 0.04 0.17 0.035 0.63
$ \vphantom {\sqrt{0}}10^{4}H_{\rm {P}}/R_{2} $ 0.84 1.00 1.50 2.2 2.2 41.1
$ \vphantom {\sqrt{0}}\zeta _{\rm {s}} $ -0.31 -0.08 1.12 0.60 2.4 0.14
$ \vphantom {\sqrt{0}}\zeta _{\rm {e}} $ 0.70 1.04 0.90 0.76 1.45 -0.2


Source LaTeX | All tables | In the text