\begin{table}%T1 %\centering \par \caption{\label{TableSingleStars}Values of several stellar models. Nos.~1$-$3 are unevolved MS stars, 4 is a remnant of thermal timescale mass transfer of an evolved MS star with an initial mass of \protect$ 1.5~ M_{\sun }\protect $, an initial central hydrogen abundance of \protect$ 0.06\protect $, an initially \protect$ 0.6~ M_{\sun }\protect $ white dwarf primary, \protect$ \bar{\eta }=0.25\protect $, and subsequent mass loss driven by strong braking according to \citet{Verbunt-Zwaan} using \protect$ f_{\rm {VZ}}=1\protect $. No.~5 is similar but with an initial mass of \protect$ 3~ M_{\sun }\protect $, an initial central hydrogen abundance of~\protect$ 0.41\protect $, an initially \protect$ 1.4~ M_{\sun }\protect $ neutron star primary, and \protect$ \bar{\eta }\protect $ is determined by an Eddington accretion rate of \protect$ 2\times 10^{-8}~ M_{\sun }/\rm {yr}\protect $, otherwise \protect$ \bar{\eta }=1\protect $. No.~6 is a giant.} {\footnotesize \begin{tabular}{c|cccccc} \hline \hline Model No.& 1& 2& 3& 4& 5& 6\\ \hline %\hline $ \vphantom {\sqrt{0}}X_{\rm {c}} $& 0.71& 0.71& 0.71& 0.05& 0.36& 0\\ %\hline $ \vphantom {\sqrt{0}}M_{2}/M_{\sun } $& 0.3& 0.5& 0.8& 0.45& 0.60& 0.8\\ %\hline $ \vphantom {\sqrt{0}}R_{2}/R_{\sun } $& 0.284& 0.436& 0.694& 0.695& 0.755& 25.81\\ %\hline $ \vphantom {\sqrt{0}}\log T_{0}/\rm {K} $& 3.552& 3.590& 3.705& 3.648& 3.738& 3.582\\ %\hline $ \vphantom {\sqrt{0}}\log L/L_{\sun } $& --1.93& --1.41& --0.54& --0.77& --0.34& 2.10\\ %\hline $ \vphantom {\sqrt{0}}M_{\rm {ce}}/M_{2} $& 1.0& 0.23& 0.04& 0.17& 0.035& 0.63\\ %\hline $ \vphantom {\sqrt{0}}10^{4}H_{\rm {P}}/R_{2} $& 0.84& 1.00& 1.50& 2.2& 2.2& 41.1\\ %\hline $ \vphantom {\sqrt{0}}\zeta _{\rm {s}} $& --0.31& --0.08& 1.12& 0.60& 2.4& 0.14\\ %\hline $ \vphantom {\sqrt{0}}\zeta _{\rm {e}} $& 0.70& 1.04& 0.90& 0.76& 1.45& --0.2\\ \hline \end{tabular}} \end{table}