P. Petitjean1,2 - B. Aracil1,3
1 - Institut d'Astrophysique de Paris, 98bis Boulevard Arago,
75014 Paris, France
2 -
LERMA, Observatoire de Paris-Meudon, 61 avenue de l'Observatoire,
75014 Paris, France
3 -
Department of Astronomy, University of Massachusetts,
710 North Pleasant Street, Amherst, MA 01003-9305, USA
Received 6 October 2003 / Accepted 3 May 2004
Abstract
We use very high quality VLT-UVES quasar spectra
obtained in the course of the ESO Large Programme "Cosmic evolution
of the Intergalactic Medium", to show that the ratio of the
C IV doublet rest-wavelengths published in the literature and
widely used is not consistent with high-redshift observations.
From the analysis of 106 C IV systems we obtain:
/
.
A similar analysis on 28 Si IV systems shows that the
observed ratio is consistent with the well known
Si IV
1393,1402 wavelengths.
Using Si IV lines to calibrate the C IV lines in 11 systems, we find
.2049 and
Å which is consistent with the Griesmann & Kling (2000) laboratory
wavelengths. The precision on the doublet ratio is better because of
the large number of C IV systems available for the measurement.
This shows that it is possible to perform atomic physics measurements
using high redshift astrophysical data.
Key words: cosmology: observations - galaxies: intergalactic medium - galaxies: halos - galaxies: quasars: absorption lines
The resonance transitions 2s2S1/2-2p2P
1/2,3/2
near 1550 Å for C IV and 3s2S1/2-3p2P
1/2,3/2 near 1400 Å for Si IV are among the most important transitions for optical
plasma diagnostics in the interstellar medium, the intergalactic medium
and stellar atmospheres. They are widely observed in the ultra-violet with
HST but also in the optical and infrared wavelength ranges when
redshifted. The rest wavelengths of these transitions have been
measured experimentally by Griesmann & Kling (2000). These measurements
are very important as the energy of the atomic transitions depend
on the electromagnetic coupling constant
that has been claimed recently to vary with cosmic time (Murphy et al. 2003;
see however Srianand et al. 2004 and Chand et al. 2004).
Indeed, the possible time variation of
is registered in the absorption line spectra seen toward
high-z QSOs (Savedoff 1956) and several attempts to measure the variation in
were based on measuring at high redshift the wavelengths of
alkali doublets
like the Si IV doublet (Cowie & Songaila 1995;
Varshalovich et al. 1996; Murphy et al. 2001b). The C IV doublet could
be used as well if the rest wavelengths were known with better accuracy.
In addition,
C IV is one of the species most frequently detected in the gas at high redshift.
The ratio of the two wavelengths in the doublet is therefore of great interest
to anyone interested in fitting the C IV absorption lines at high-z
(e.g., Rauch et al. 1996; Pichon et al. 2003).
The laboratory measurements of the doublet wavelengths by Griesmann & Kling (2000) are more accurate for Si IV than for C IV. In the present paper we show that we can measure the ratio of the two wavelengths in the C IV doublet with even better accuracy using high redshift data the calibration of which is ascertain by the Si IV doublet.
The data used in this study have been obtained with the Ultra-violet and Visible
Echelle Spectrograph (UVES) mounted on the ESO KUEYEN 8.2 m telescope
at the Paranal observatory for the ESO-VLT Large Programme
"Cosmic evolution of the intergalactic medium'' (PI: Jacqueline Bergeron).
This survey gives a homogeneous sample of 20 QSO lines of sight suitable for studying various properties of the
inter-galactic medium over a redshift range 1.7-4.5.
All the quasars were observed in good seeing conditions
(better than 0.8 arcsec) with 1 arcsec slit width. The data were
reduced using an improved version of the UVES pipeline, a set of procedures implemented in a dedicated context
of MIDAS, the ESO data reduction package (Aracil et al. in preparation).
The main characteristics of the pipeline is to perform a precise inter-order
background subtraction for science frames
and master flat-fields, and to allow for an optimal extraction of the object
signal rejecting cosmic ray impacts and performing sky-subtraction at the
same time. The reduction is checked step by step. Wavelengths are corrected
to vacuum-heliocentric values and individual 1D spectra are combined
together. As the error spectrum is very important for our analysis care was
taken while combining the error spectrum of individual exposures.
In all cases spectra were obtained covering the observed
wavelength range of 3000-10 000 Å. In this study we use
only absorption lines that are redshifted to the red of the Lyman-
emission line. A typical S/N ratio of
50-80 per pixel
is achieved in the whole wavelength range of interest and spectral
resolution is
45 000. This
is approximately a factor two improvement on S/N at similar resolution
compared to earlier studies.
Possible systematic effects leading to wavelength mis-calibration
have been discussed by Murphy et al. (2001a) and we
specify here a few technical points.
Wavelength calibration has been extensively checked using the ThAr lamps. Errors measured from the lamp spectra
are typically 2 mÅ. Air-vacuum wavelength conversion has been made
using Edlén (1966) formula at 15
C. A shift in the
wavelength scale can be introduced if the Thorium-Argon lamp and the science
spectra are taken at systematically different temperatures. In the case of
the Large Programme,
most of the lamp spectra have been taken just before or after the science exposures.
In any case, the temperature variations measured over one night in UVES are
smaller than 0.5 K (see Dekker et al. 2000).
Heliocentric correction is done using Stumpff (1980) formula.
In addition, all exposures have been taken with the slit alined
with the parallactic angle so that atmospheric dispersion has little effect
on our measurements.
Therefore, as discussed by Murphy et al. (2001a), uncertainties due to these
effects are neligible.
Note that in any case, in this study we mainly discuss the ratio of the
C IV
1548,1550
wavelengths which are separated by
4-6 Å only (Sect. 3).
On these scales, relative calibration is even more accurate.
We have searched the 20 QSO lines of sight for C IV systems and fitted them automatically with Voigt profiles (see Pichon et al. 2003). In the course of this exercize, we noticed that for a number of systems, apparently not particularly blended, the two absorption lines were slightly shifted in the wavelength direction one relative to the other. Looking carefully at these systems led us to the conclusion that the wavelengths given in the literature (that we were using) were not accurate enough given the quality of the data.
Typical examples are given in Fig. 1. It can be seen that
the separation of the two modelled absorption lines, when using published
wavelengths, is too large compared to the relative positions of the observed
lines. The slight shift is smaller than the pixel size but is
coherent over the profile.
Note that the
wavelength calibration accuracy is of the same order of magnitude than the
accuracy of the laboratory measurements. Indeed the C IV wavelengths are
and
Å
when our accuracy is of the order of 2 mÅ for a mean redshift close to
about 2.
![]() |
Figure 1:
Four examples of C IV systems in our sample. The dashed lines
correspond to fits using the old wavelength ratio.
The separation of the two modelled lines (![]() ![]() |
Open with DEXTER |
The C IV systems in our sample are found over a large redshift
range (
1.3 < z < 3.5) and therefore are redshifted at very different places
in the spectra. It is therefore highly improbable that an observed systematic shift,
if any, be due to the wavelength calibration.
Although great care was taken in the calibration procedure, this possibility can only be
completely dismissed however with an internal calibrator. It happens that the
wavelengths of the Si IV doublet are better known than the C IV ones.
The two wavelengths are
and
Å respectively. Therefore,
we should not see any significant shift for the Si IV doublet.
![]() |
Figure 2:
The fitted parameter c defined as
![]() ![]() ![]() ![]() ![]() ![]() |
Open with DEXTER |
We have selected absorption systems with components that are not saturated
and that are not blended with other absorptions. We have identified 120 and 34 such, respectively, C IV and Si IV doublets.
For each of them we fit the two lines of the doublets with Voigt profiles
leaving free the parameter c defined as
/
/
).
This parameter c measures the deviation of the observed ratio from the
published one (marked with the subscript "0'').
We vary the parameter c and fit the systems for each value of c. We choose
as an estimator of c the value at which
is
at minimum. Errors are derived as usual from the range over which
.
We then compute the mean value of c and reject systems at more than 3
from
the mean. Inspection of the rejected systems show that they are characterized
by either a defect in the spectrum or a blend with a line from
another system. We end up with 106 C IV and 28 Si IV systems.
Results are shown for these systems in
Fig. 2 where all measurements of the parameter c are given
for Si IV (upper panel) and C IV (lower panel) versus an
arbitrary ranking scale. Systems are ordered by increasing redshift however.
One sigma errors are shown for each of the systems.
The weighted means of the ratios are
(
and (
for, respectively, C IV and Si IV.
The scatter in the measurements is larger
than what is expected from most of individual errors. This is probably because
effects like continuum fitting and blending are not accurately taken into
account when estimating individual errors.
We therefore estimate the non weighted means and obtain: (
and (
for, respectively, C IV and Si IV.
Our result is not changed.
Note that the measurement on Si IV is less accurate because there are
nearly 4 times less Si IV systems as compared to C IV systems.
It is apparent that although the measured value for the Si IV doublet is
compatible with zero within errors, the one for the C IV doublet is not.
As a final check, we have used the only Keck data publicly available, a very good spectrum of APM 08279+5255 (Ellison et al. 1999; Petitjean et al. 2000), to perform the same analysis on the 5 C IV systems suitable for this. The measurements are overplotted in Fig. 2 and are compatible with our findings.
We can try and derive the absolute value of the C IV wavelengths by fitting together the C IV and Si IV doublets, using Si IV as an anchor. This can be done only
on a few systems as both doublets should meet the previous selection
criteria. Only 11 systems are available for this overall fit for which we
fix the Si IV wavelengths. We vary the two C IV wavelengths
maintaining their ratio at the value derived in the previous section.
The histogram
of the shifts
to be applied to
is
given in Fig. 3. We find that the best values for
the two wavelengths are
.2049 and
Å.
Due to lack of statistics, the accuracy is not better than in the
laboratory. Wavelengths
are consistent within errors with Griesmann & Kling measurements.
This procedure could be questionned as it is known that
C IV profiles can be slightly more extended than Si IV ones.
We have checked that our selection criteria avoid this potential problem
by comparing the C IV and Si IV Doppler parameters derived
for the components used in the fits (see Fig. 4).
Indeed, we note, as expected if the Si IV and the C IV profiles are consistent, that most of the points lie
between the curves (
)
expected
for turbulent broadening and (
)
expected for thermal broadening. This supports the idea that the two
doublets can be fitted together consistently and used for this
measurement.
![]() |
Figure 3:
Histogram of the wavelength shift to be applied to
the published wavelength of C IV![]() ![]() ![]() |
Open with DEXTER |
![]() |
Figure 4:
The Doppler parameter of C IV components
is shown versus the Doppler parameter of Si IV
corresponding components as measured in the fits of the 11 C IV-Si IV systems. Most of the points lie
between the curves (
![]() ![]() |
Open with DEXTER |
We have used high quality and high spectral resolution data of high redshift
quasars gathered
during the ESO large programme "Cosmic evolution of the intergalactic medium"
to constrain the wavelengths of the C IV doublet.
We have fitted 106 C IV and 28 Si IV doublets. The latters
are well fitted using the published wavelengths. This is not the case of
the formers for which published wavelengths are not consistent with
astrophysical data. The weighted mean of the derived ratio /
for Si IV is consistent with the wavelengths published in the literature.
On the contrary, the ratio has to be corrected adding a correction factor cdefined as
/
)
of
for C IV.
Note that the precision here is not high enough to discuss any
variation of
.
For this, a highly focussed procedure has to be implemented.
Additional C IV measurements
using the publicly available Keck spectrum of APM 08279+5255
are consistent with the UVES measurements. Our best estimates
of the wavelengths are
.2049 and
with their ratio better defined as
/
.
This testifies the quality of the wavelength calibration of the data obtained with UVES. This is of great importance for future studies based on the unique data set gathered during the ESO large programme "Cosmic evolution of the intergalactic medium''.
Acknowledgements
This work is based on observations collected during programme 166.A-0106 (PI: Jacqueline Bergeron) of the European Southern Observatory with the Ultra-violet and Visible Echelle Spectrograph mounted on the 8.2 m KUEYEN telescope operated at the Paranal Observatory, Chile.