R. Surendiranath1 - S. R. Pottasch2 - P. García-Lario 3
1 - Indian Institute of Astrophysics, Koramangala II Block,
Bangalore - 560034, India
2 -
Kapteyn Astronomical Institute, PO Box 800, 9700 AV Groningen, The
Netherlands
3 - ISO Data Centre, Science Operations and Data Systems
Division, Research and Scientific Support Department of ESA, Villafranca
del Castillo, Apartado de Correos 50727, 28080 Madrid, Spain
Received 9 January 2004 / Accepted 16 March 2004
Abstract
ISO and IUE spectra of the round planetary
nebula Me 2-1 are combined with visual spectra
taken from the literature to obtain for the first time
a complete extinction-corrected spectrum. With this,
the physico-chemical characteristics of the nebula and its central star are
determined by various methods including photoionization modeling using
Cloudy. The results of the modeling are
compared to those derived from a more classical,
simple abundance determination approach. A
discussion is presented on the validity of the different methods used
and assumptions made.
Finally, the main results are interpreted in terms of the evolutionary
stage of Me 2-1 and its central star.
Key words: ISM: abundances - planetary nebulae: individual: Me 2-1 - infrared: ISM - ISM: lines and bands
Me 2-1 is a relatively small, round-shaped, faint planetary nebula, first
discovered by Merrill (1942) more than 60 years ago.
Observations taken with the Wide Field Planetary Camera 2 (WFPC2) on board
HST (see Fig. 1) in several blue and ultraviolet band passes
reveal a smooth nebular component extended over 9
with
little clumping. The central star, although very faint, is clearly
detected at the centre of the nebula in the HST images.
Wolff et al. (2000) measured its continuum, deriving a visual
magnitude of
and a rather high temperature, well above
100 000 K, which we discuss later. Its spectral type is not known
as yet.
![]() |
Figure 1: The planetary nebula Me 2-1as seen with HST. This is a colour-composite image of WFPC2 exposures taken with the F547M filter (red), the F439W filter (green) and the sum of the F185W, F218W, F255W and F336W filters (blue). |
Open with DEXTER |
Me 2-1 (PK 342.1+27.5) is, as the PK number indicates, well above the galactic plane, suggesting that this planetary nebula is located not too far away from us. Later in the paper a distance of 2.3 kpc is suggested. The high galactic latitude can be interpreted as an indication of a low mass progenitor star, which eventually could be reflected in the chemical abundances derived. Statistical distances computed using different methods range between 2 kpc and 7 kpc, which makes an estimation of its actual luminosity and mass uncertain.
The purpose of this paper is to determine the chemical abundances for
this nebula and to derive parameters
like
,
log g, etc., of its central star more accurately than
before. This is achieved first by including
the ISO (Infrared Space Observatory)
spectral data in the analysis. Second, by applying
state-of-the-art photoionization modeling, to reproduce the
overall spectral energy distribution and the observed nebular emission
line intensities from the ultraviolet to the infrared range.
The advantages of incorporating the ISO spectrum in the analysis have previously been discussed (e.g. see Pottasch & Beintema 1999; Pottasch et al. 2000, 2001; Bernard Salas et al. 2001), and can be summarized as follows.
The infrared lines originate
from very low energy levels and thus give an abundance which is not
sensitive to the temperature in the nebula, nor to possible temperature
fluctuations. Furthermore, when a line originating from a
high energy level in the same ion is observed, it is possible to determine
an effective (electron) temperature
at which the lines of that
particular ion are formed. When
for many ions can be
determined, it is possible to make a plot of
against
ionization potential, which can be used to determine the
for ions for which only lines originating from a high energy level are
observed. Use of an effective electron temperature takes into account
the fact that ions are formed in different regions of the nebula. In this way,
possible temperature variations within the nebula can be taken into
account.
Use of the ISO spectra have further advantages. One of them is that the number of observed ions used in the abundance analysis is approximately doubled, which removes the need for using large "ionization correction factors'', thus substantially lowering the uncertainties in the abundances derived. A further advantage is that the extinction in the infrared is almost negligible, eliminating the need to include large extinction correction factors.
A second method of improving the abundances is by using a nebular model to determine them. This has several advantages. First it provides a physical basis for the electron temperature determination. Secondly it permits abundance determination for elements which are observed in only one, or a limited number of ionic stages. This is true of Mg, S, Cl, K, Ca and Fe which could not be accurately determined without a model. A further advantage of modeling is that it provides physical information on the central star and other properties of the nebula. It thus allows one to take a comprehensive view of the nebula-star complex.
A disadvantage of modeling is that there are possibly more unknowns than observations and some assumptions must be made, for example, concerning the geometry. In our case we will assume that the nebula is spherical and that no clumping exists. The observed round form and smooth emission seen in Fig. 1 make these assumptions reasonable as a first approach. Other assumptions will be discussed in Sect. 5.
This paper is structured as follows. First the spectroscopic data are presented in Sect. 2. In Sect. 3 a preliminary estimate of distance, radius and luminosity of the central star are made. Section 4 discusses a simple method to determine the chemical composition of Me 2-1 and presents the resultant abundances. In Sect. 5 the approach to modeling, its assumptions and results are given. In Sects. 6.1 and 6.2 the nebular density, temperature, and comparison of various determinations of central star temperature are presented. Section 6.3 compares the model and observed spectra. The nebular abundances are presented and discussed in Sect. 7. Section 8 gives a brief sketch of the evolutionary state, and Sect. 9 presents our conclusions.
In the following we describe the observed ultraviolet, visual and infrared spectroscopic data used in the analysis. A compilation of the extinction-corrected emission line fluxes and identifications are given in Cols. 4 and 8 of Table 7 for a select set of 98 lines.
Table 1: Log of IUE NEWSIPS spectra of Me 2-1.
Ten observations of Me 2-1 were taken with the IUE
(International Ultraviolet Explorer),
all using the large aperture (10
23
).
The log of the IUE observations is given in Table 1.
These were retrieved from the STSCI-MAST (IUE) archive,
which contains the NEWSIPS (New Spectral Image Processing System)
spectra. This processing system incorporated a number of improvements
and enhancements in the reduction algorithms and calibrations
(see http://archive.stsci.edu/iue/newsips/newsips.html for more details).
The available spectra are a combination of low and high resolution
observations covering from 1150 Å to 3200 Å and were acquired between
1979 and 1990. Of these, the four high
resolution spectra are found to be of poor quality.
We have merged the remaining low resolution (6 Å) spectra and
extracted the fluxes using IUETOOLS under IRAF. The merging and
exposure-weighted averaging yielded a better S/N spectrum.
We were able to detect some lines unreported so far; the new lines and their
probable identifications are 1574 Å ([Ne V] 1575),
1599 Å ([Ne IV] 1602), 1866 Å (Al III 1863), 2301 Å
(C III 2297) and 2784 Å ([Mg V] 2785).
To minimize the errors in the measured fluxes due to saturation effects, the line fluxes of 1547 Å (C IV 1548, 50), 1639 Å (He II 1640) and 1906 Å (C III] 1907, 09) were measured on the shortest exposed spectrum (SWP 05233). A check with Feibelman's (1994) extraction for these strong lines showed good agreement with those from the abovementioned averaged spectrum. Figures 2 and 3 show the final spectra used in this work and Table 7 gives the extracted fluxes.
![]() |
Figure 2: The averaged IUE SWP spectrum of Me 2-1. |
Open with DEXTER |
![]() |
Figure 3: The averaged IUE LWP/LWR spectrum of Me 2-1. |
Open with DEXTER |
Me 2-1 has been optically observed on many occasions in the last two decades (see Aller et al. 1981; Cuisinier et al. 1996; Kingsburgh & Barlow 1994; Moreno et al. 1994). Due to the better consistency in measured fluxes, line identifications and coverage of wavelength range, we decided to use the spectral observations of Aller et al. (1981) and Moreno et al. (1994) for our work, after averaging them. The averaged fluxes are listed in Table 7.
The ISO SWS observations were made on August 5, 1997 (TDT 62803316)
with the SWS 02 observing mode (see the ISO Handbook Vol. V -
Leech et al. 2003), which provides a spectral resolution of
/
1000-2000. Several small wavelength
intervals were observed covering the spectral range from 2 to 37
m
leading to the detection of 7 nebular emission lines plus Br
at
4.05
m. A set of seven more emission lines that was expected
within the observed wavelength range was not detected.
We estimated upper limits for them and included them in the analysis. These
are marked by the symbol "<'' in Table 7.
All the observed lines are unresolved at this spectral resolution. The
aperture size of the instrument at these wavelengths ranged from 14
20
to 20
33
,
admitting radiation
from the entire nebula.
Data reduction of the pipeline products directly retrieved from the ISO
Data Archive was carried out using ISAP (ISO Spectral Analysis Package)
version 2.1, developed at IPAC (Sturm et al. 1998).
First, data points affected by cosmic rays or deviating significantly from
the majority were removed through a
clipping. Then, since the
spectroscopic measurements consist of several up-down scans done within
a given band, these were compared and where no significant differences were
found, the measurements in the two directions were averaged.
Figure 4 shows the reduced ISO spectra.
Since most of the lines are well represented by Gaussian profiles we
fitted the line profiles to a Gaussian function and obtained the
wavelength of the line centre, the FWHM (full width at half maximum)
and the integrated flux of each line using the available standard routines
in ISAP.
The uncertainties in the absolute flux calibration are expected to be approximately 20% for the stronger emission lines and about 30% for the fainter ones. The reliability of detection of even the faintest lines has been ascertained by the consistency of the associated Doppler shifts among all lines.
![]() |
Figure 4: The ISO SWS 02 spectra of Me 2-1. |
Open with DEXTER |
There are several methods for estimating the extinction towards planetary
nebulae; for example, the
comparison of the observed and the theoretical Balmer decrement,
the comparison of the radio emission with the H
flux, etc.
Aller et al. (1981) derived a value of 0.36 for the extinction
constant c; Moreno et al. (1994) obtained a similar value of
0.34, both from the Balmer decrement.
However, other values can be found in the published
literature. Preite-Martinez & Pottasch
(1983) give a value of
EB-V = 0.18 i.e. c = 0.26. They obtained
this by averaging three values derived i) by comparing the radio
flux with the H
flux; ii) from the absorption dip at
2200 Å, and iii) from the Balmer decrement.
On the other hand, if we use the H
to
H
ratio from Kaler's (1983) observations we get
c = 0.16 while using average value from Aller et al. (1981)
and Moreno et al. (1994) for the same ratio yields c = 0.4.
![]() |
Figure 5:
![]() ![]() |
Open with DEXTER |
Our new estimate is in good
agreement with the one derived by Preite-Martinez & Pottasch (1983),
and in the remainder of this paper we will use
this value c = 0.28 or
EB-V = 0.19, together with the
extinction curves of Seaton (1979) and Fluks et al. (1994).
Finally, since Me 2-1 is a high excitation object i.e., F(
)
is more than 75% of F(H
), we corrected the unreddened
H
flux
for contamination by He+ Pickering
transition.
All unreddened line fluxes were normalized to this unreddened and
uncontaminated H
flux as 100 units; these are given in
Table 7.
These quantities are strongly dependent on the distance of the nebulae
which is difficult to obtain accurately.
By equating the
density with the forbidden line density
(see Sect. 4.1) a value of d=2.3 kpc
is found and this will be the value
used when necessary throughout the rest of this paper.
That the distance is at the low end of the statistical distances,
taken together with the high galactic latitude, may indicate that the
nebula is formed from a nearby low mass star.
This value, however, has an uncertainty
which could be larger than 40%. This leads to stellar radii
R/R
= 0.028. Using a value for temperature T=140 000 K
(which is the "Stoy'' temperature
;
see Sect. 6.2.1),
we obtain the stellar luminosity
.
It is also possible to obtain the stellar luminosity from the nebular
H
luminosity, since there is a direct relationship between the
number of ionizing photons and the number of H
photons in the
case in which the nebula absorbs all the ionizing photons emitted by
the star. A mathematical formulation of this can be found in Pottasch
& Acker (1989). It yields the following luminosity:
L/L
= 240. This is roughly the
same value found above and indicates that most of the ionizing photons must
actually be absorbed in the nebula. However, it
does not give any information about the
distance, since both formulations have the same distance dependence.
The method of analysis is the same as used in the papers cited in the introduction. First the electron density and temperature as functions of the ionization potential are determined. Then the ionic abundances are determined, using density and temperature appropriate for the ion under consideration, together with Eq. (1). Then the element abundances are found for those elements for which a sufficient number of ionic abundances have been derived.
The ions used to determine
are listed in the first
column of Table 2. The ionization potential required to reach that
ionization stage, and the wavelengths of the lines used, are given in
Cols. 2 and 3 of the table. Note that the wavelength units are Å when 4 ciphers are given and microns when 3 ciphers are shown. The
observed ratio of the lines is given in the fourth column; the
corresponding
is given in the fifth column. The
temperature used is discussed in the following section, but is
not important since these line ratios are essentially determined by the
density.
The electron density appears to be about 1700 cm-3. There is no
indication that the electron density varies with ionization potential
in a systematic way. It is interesting to compare this value of the
density with the
density found from the H
line. This
depends on the distance of the nebula which is not accurately known,
and on the angular size of the nebula. Because of the distance
uncertainty, we shall turn the calculation around, and compute what
the distance will be for an
density of 1700 cm-3 in a sphere
of radius 4.5
,
that emits the H
flux given above. This
yields a distance of 2.3 kpc. This value will be used in further
computations in this paper.
Table 2: Electron density indicators in Me 2-1.
A number of ions have lines originating from energy levels far enough
apart that their ratio is sensitive to the electron temperature. These
are listed in Table 3, which is arranged similarly to the
previous table. The electron temperature is found to increase as a
function of ionization potential. There is some scatter.
The [Ne V] temperature is high which might indicate that the
intensity of the line at 3425 Å has been overestimated.
Table 3: Electron temperature indicators in Me 2-1.
The ionic abundances have been determined using the following equation:
The results are given in Table 4, where the first column lists the
ion concerned, and the second column the line used for the abundance
determination. The third column gives the intensity of the line used
relative to H
.
The fourth column gives the electron
temperature used, which is a function of the ionization potential and
is taken from Table 3. The ionic abundances,
are in the fifth column, while the sixth column gives the Ionization
Correction Factor (ICF). This has been determined empirically. Notice
that the ICF is unity for helium, carbon, nitrogen, oxygen and neon
because all important stages of ionization have been observed. The ICF
for the other elements has been determined by comparing the observed
ionization stages as a function of ionization potential with those
elements where all important ionization stages are present, especially
nitrogen and neon. The three ionization stages in both argon and
potassium are the most important and thus justify the use of an
ICF close to unity. For sulfur the importance of the missing
ionization stages is difficult to judge, therefore an empirical ICF
is very uncertain. This is less true
of magnesium and chlorine, which might still be uncertain by a factor
of two. Only one stage of ionization has been observed in silicon and
calcium for which only a model approach can give a trustworthy
solution. Iron was not attempted with this approach. The element
abundances are given in the last column of the table.
The helium abundance has been derived using the theoretical work of
Benjamin et al. (1999). For recombination of singly ionized
helium, most weight is given to the 5875 Å line, because
the theoretical determination of this line is the most reliable.
The abundances in Me 2-1 are in general very similar to solar abundances. The oxygen abundance is almost solar. Neon, argon and chlorine are slightly lower. Nitrogen is even lower than in the Sun, indicating that very little dredge-up has taken place.
The only recombination line in the spectrum is the C II line at
4267 Å. Using the observed ratio of this line to H
of
and the effective recombination coefficient to form
this line given by Davey et al. (2000) at an electron
temperature of
,
we obtain a value of
C
.
This is very close to the value of
obtained from the collisionally excited line at
1909 Å. The two values are equal within the uncertainties
of the observations.
Various methods exist to determine the temperature of the central stars of planetary nebulae. The most important of these are 1) Zanstra method; 2) Energy balance method; 3) NLTE study of the central star spectrum; 4) modeling the degree of nebular ionization. The first three methods are known to be dependent on various uncertain assumptions. They therefore give conflicting and controversial temperatures. The fourth method, for which the ISO observations are needed, is a comprehensive procedure and can give a measure of self-consistency in the results. In the optical and in the UV only "low'' ionization stages are seen, which do not provide enough information to distinguish temperatures above 100 000 K. However, with ISO SWS we can cover lines of much higher ionization potential, up to 303 eV.
Modeling the nebula-star complex will allow us to characterize the
central star's atmosphere (i.e.,
,
log g and luminosity),
to determine the distance and other nebular properties like its composition.
This method can take into account the presence of dust and molecules in the
nebular material and thus is very comprehensive in approach. While the
line ratio method is simple and fast, the ICFs rest on uncertain physics
and often one needs to consider all details
of observations and theory since every parameter is inter-related and
dictated by nebular astrophysics and astrochemistry, both locally and
globally. To this end, modeling is effective and the whole
set of parameters is determined in an unified way, assuring self
consistency. In this way one gets a good physical insight into the
PN, the method and the observations.
It is with this in mind that we constructed a photoionization model for Me 2-1 with the code Cloudy, version 96.04 i.e., 96 beta 5 (Ferland 2001).
Table 5: Parameters representing the best-fit model.
We examined the HST images of Me 2-1(see Fig. 1) available in the HST Data Archive and found that the image has a sharp-edged round morphology. We determined an angular diameter of 8
After a number of numerical experiments we found that it was not
possible to get at the same time a good match of the model nebular
emission spectrum with the observations and of the transmitted continua
with the HST observations.
This effectively meant that we needed a
very hot CSPN. When CSPNs of lesser
were tried we could match
the transmitted continua with the HST observations only for certain models but
could not get a matched nebular spectrum at the same time.
Thus we did the modeling without imposing a good match
between the model continua and the HST observations as a necessary condition.
In this way we could obtain a well matched nebular emission spectrum.
Further discussion on the stellar continua is given later.
The model value of the absolute V magnitude is 6.43 which (for the
distance and extinction used as input) yields mv of 18.85.
This differs from the value (18.40) given by Wolff et al. (2000) as
measured with HST.
Based on the sensitivity of the model results to changes
in the input parameters, we estimate the accuracies in the parameters
(quoted in Table 5)
as follows: (,
30 cm-3; luminosity,
;
,
10 000 K; distance,
0.1 kpc;
abundances,
30%).
Table 5 gives the input parameters of the best matched model,
and the corresponding output spectral fluxes are compared to
the observed ones in Table 7. The abundances in Table 5 are
given on a logarithmic scale of
.
For
verification by users of Cloudy, we give the parameters to a
higher number of significant figures (exactly as we used) than would be
dictated by the accuracy involved in the method.
![]() |
Figure 6: Stellar ionizing radiation - Incident (solid line) and transmitted (dotted line); the y-axis values are suitably scaled. |
Open with DEXTER |
![]() |
Figure 7: Ionization structure of He, C, N and O. (r = outer radius; r0 = inner radius.) |
Open with DEXTER |
![]() |
Figure 8: Ionization structure of Ne, Mg, Si and S. (r = outer radius; r0 = inner radius.) |
Open with DEXTER |
![]() |
Figure 9: Ionization structure of Cl, Ar, K, Ca and Fe. (r = outer radius; r0 = inner radius.) |
Open with DEXTER |
Table 6: Central star continua from model and observation.
As mentioned in Sect. 1, this nebula is excited by a faint star of
unknown spectral type. Using the visual magnitude of
18.40 (obtained from the HST measurements of
Wolff et al. 2000) and the H
flux given above, the
hydrogen Zanstra temperature Tz(H) is about 130 000 K. The doubly ionized helium Zanstra temperature
Tz(HeII) is about 145 000 K. The "Stoy'' or Energy
Balance temperature can also be found from the above data. The value
of the ratio of "forbidden line emission'' (including all collisionally
excited emission) to H
is about 58, which leads to an energy
balance temperature
of 142 000 K, assuming
blackbody emission and Case II (the nebula is optically thin for
radiation which will ionize hydrogen, but optically thick for
radiation short-ward of the ionized helium limit, see Preite-Martinez
& Pottasch 1983). If Case III is used (also optically thick for
radiation that will ionize hydrogen) we find
.
The best photoionization model gives
K. Lower temperatures
did not result in a good fit to the observed spectrum.
As mentioned earlier we have attempted to obtain a good match for
about 100 observed lines shown in Table 7.
Cloudy computes by default the fluxes of continuum at
various wavelengths and a very large number of emission lines (nearly
2000) in its output spectrum (a copy can be obtained from the first
author). The notation for line identification is by a label as per
Cloudy. This makes identifying any line in Cloudy's huge
line list (
)
easier (see notes at the bottom of Table 7).
The match between model and observation is in general very
good. There are some deviant lines. H
is weaker
in the model while some other Balmer lines are stronger than
the observations.
We could not get any closer match than this. The observed flux
of H
seems to us abnormally high.
The line 3355 Å is actually a composite of
He I, [Cl III] and
[Fe III].
The model flux for the second line is 0.0718. The
last line is not included in Cloudy, so the disparity is
understandable. The N V line at 1240 Å is deficient in the model. This
is so since a fraction of N is pumped up to N VI as there is
an ample supply of high energy stellar photons. This could not be the case
of 1402 of
[O IV], since
the far-infrared line at 25.88
m of the same ion matches reasonably
with the observed value to within 15% accuracy. Neon lines in general
behaved rather
erratically in all the models we tested and we do not understand their
deviant behaviour. There are a few observed weak lines of potassium
(4163 Å and 6102 Å), found both in Aller et al. (1981) and
Moreno et al. (1994), but these lines are not included in
Cloudy's default list.
Cloudy has procedures to introduce new lines given by users,
but for this work, we have used only the default list throughout.
Concerning those 7 lines which have not been detected in ISO spectra but for
which we have given the upper limits, the model fluxes have been
either zero or much lower than the limits, except in one case, where it slightly
exceeded the limit. These lines are indicated by the symbol "<'' in Table 7.
Table 8: Abundances in Me 2-1.
Two earlier abundance determinations are also listed in Table 8. Those of Moreno et al. (1994) are based only on the visual spectrum so that no carbon abundance can be determined. Only one nitrogen line could be observed ([N II]) so that an ionization correction factor of more than two orders of magnitude was required, making their nitrogen abundance very uncertain. Aller et al. (1981) included the IUE ultraviolet spectrum in their analysis. Their nitrogen abundance is higher because they used an electron temperature determined from the [O III] lines for the higher nitrogen stages of ionization. Both our simplified analysis and our model analysis show that a higher electron temperature should have been used.
The oxygen abundance is similar to Solar and it is therefore likely that the original composition of the star was nearly Solar. The nitrogen abundance is now also similar to Solar, therefore probably not very much nitrogen was formed in the course of stellar evolution by the so called "second dredge-up''. This means that the initial mass of the star was lower than 2.4 solar masses. The large carbon abundance was probably produced during the "third dredge-up'', which also increased helium by a small amount. Both the "first'' and the "third dredge-up'' do not cause a substantial increase in nitrogen abundance. This would be compatible with an initial stellar mass of about 1.5 solar masses. This would also be compatible with the position of the nebula about 1 kpc above the galactic plane.
Acknowledgements
This research has made use of the SIMBAD bibliographic facility and the authors wish to acknowledge their gratitude for the same. Thanks are also due to the ADS(Astrophysics Data System) services of NASA which were used frequently during the course of this work. The ISO Spectral Analysis Package (ISAP) is a joint development by the LWS and SWS Instrument Teams and Data Centers. R.S. would like to thank J. S. Nathan for help in the installation of IRAF and IUETOOLS packages. P.G.L. acknowledges support from grant AYA2003-09499, financed by the Spanish Ministerio de Ciencia y Tecnología.
Table 4:
Ionic concentrations and chemical abundances in Me 2-1.
Wavelength in Angstrom for all values of
above 1000, otherwise
in
m.
Table 7:
The emission line fluxes (H
).