Table 3: Anisotropy function $h^{\rm T}$ for fast magnetosonic waves. In this table we introduced the functions $\xi (s) = {c_1 (s) \Gamma (1+s/2) \over \sqrt {\pi } \Gamma ((s+1)/2)} B({s+4 \over 2},{s+2 \over 2})$ with the generalized $\beta $-function B(x,y) and $c_3 (s)= {\Gamma (1-s/2) \over \pi \Gamma (2+s/2)}$.
$1 \over 2$ Anisotropy parameter $\Lambda $ $
h^{\rm T}(\Lambda, \epsilon, s) $
$1 \over 2$ $ \Lambda \ll \epsilon ^2 \ll 1 $ $ \xi (s)
\Lambda^{s+1 \over 2} \epsilon^{-(s+2)} $
$1 \over 2$ ${\epsilon ^2 \ll \Lambda \ll 1}$ $ c_3 (s)
\Lambda^{-1/2} \left[ \ln \epsilon ^{-1} + \ln \Lambda ^{1/2} \right] $
$1 \over 2$ ${\Lambda = 1}$ $ c_1 (s) \ln
\epsilon^{-1} $
$1 \over 2$ $\Lambda \gg 1$ $ c_1 (s) s
\Lambda^{-s/2} \ln \epsilon ^{-1} $


Source LaTeX | All tables | In the text