... masses[*]
We use a spherical definition of the Jeans mass, $M_{\rm J} \equiv 4/3~\pi \rho (\lambda_{\rm
J}/2)^3$, with density $\rho$ and Jeans length $\lambda_{\rm J}\equiv
\left(\frac{\pi{\cal R}T }{G \rho}\right)^{1/2}$ and where G and $\cal R$ are the gravitational and the gas constant. The mean Jeans mass $\langle M_{\rm J} \rangle$ is then determined from the average density in the system $\langle \rho \rangle$.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Copyright ESO 2004