A&A 419, 71-87 (2004)
DOI: 10.1051/0004-6361:20040071
S. Giacintucci1 - T. Venturi2 - S. Bardelli1 - D. Dallacasa2,3 - E. Zucca1
1 - INAF - Osservatorio Astronomico di Bologna,
via Ranzani 1, 40127 Bologna, Italy
2 -
Istituto di Radioastronomia del CNR, via Gobetti 101, 40129, Bologna, Italy
3 -
Dipartimento di Astronomia, Università di Bologna,
via Ranzani 1, 40127, Bologna, Italy
Received 10 June 2003 / Accepted 2 February 2004
Abstract
We present Very Large Array (VLA) 1.4 GHz (21 cm)
observations of the region between the centres of A3558 and A3562, in the major
cluster merger complex of the Shapley Concentration.
Our final catalogue includes a total of 174 radio sources above the
flux density limit of 0.25 mJy b-1. By cross-correlation with optical
and spectroscopic catalogues we found 33 optical counterparts
belonging to the Shapley Concentration.
We investigated the effects of cluster merger on the radio emission
properties of the galaxy population by means of the radio source
counts and the radio luminosity functions (RLF). We found that the radio
source counts are consistent with the field source counts.
The RLF of elliptical and S0 galaxies in the region surveyed,
is consistent with the "universal'' RLF for early-type galaxies.
This result suggests that the deficit in radio galaxies found in our
previous work over the whole A3558 chain is entirely due to the
cluster A3558.
A population of faint radio
galaxies (log
(W Hz-1)
22) is also found.
Half of these objects are also blue, suggesting that
starburst is the main mechanism driving the radio emission.
Finally, we detected 14 spiral radio galaxies, whose ratio between
radio and optical emission is similar to those found in galaxies located
in rich and dynamically evolved clusters.
Our results are briefly discussed in the light of the age and stage
of the merger in the A3558 cluster complex.
Key words: radio continuum: galaxies - galaxies: clusters: general - galaxies: clusters: individual: A3558, A3562, SC 1329-313, SC 1327-312
Evidence is accumulating that the interaction processes between
clusters of galaxies, known as cluster mergers, may significantly
affect the radio emission characteristics of the cluster galaxy
population. In particular, the evolution of galaxies and the
properties of their nuclear and/or star forming activity are
undoubtely influenced by interaction with the environment.
Cluster merging and group accretion seem to play
an important role, but it is not yet completely understood how
the merging environment affects the nuclear and starburst emission
in galaxies. Owen et al. (1999) suggested that merging
may trigger radio emission, both in the form of nuclear activity
and starburst phenomena. Burns et al. (1994) interpreted
the presence of post-starburst galaxies in the X-ray and radio bridge
connecting the Coma cluster and the NGC 4839 group as the consequence
of a recent merging process between these two structures.
Using numerical simulations, Bekki (1999) concluded that the tidal
gravitational field of a cluster merger may drive a considerable
transfer of gas to the central regions of galaxies, leading to
enhanced star formation activity or feeding of the central engine of
active galactic nuclei. Vollmer et al. (2001)
suggested that a local burst of star formation could be due to
re-accretion of gas after a ram pressure stripping event, which
is thought to be responsible for the HI deficit of spiral galaxies
in the central regions of nearby clusters with respect to the
field galaxies of the same morphological type and optical size (Gunn
& Gott 1972; Bothun & Dressler 1986).
On the other hand, Fujita et al. (1999) and
Balogh et al. (1998) claimed that gas stripping resulting from
ram pressure is important in preventing gas supply to the central
regions of the galaxies and may suppress star formation. Finally Venturi et al.
(2000, hereinafter V2000) found evidence that merging may
anticorrelate with the radio emission, possibly switching off
existing radio galaxies, or temporarily inhibiting the nuclear radio
activity.
![]() |
Figure 1:
Grey scale and isocontours of the galaxy density to ![]() |
Open with DEXTER |
A major problem in our current knowledge of the role of
cluster mergers in the radio emission and in the interpretation of
the observations is the lack of statistics. Only few clusters
of galaxies have been deeply imaged over their whole extent (i.e. A2125,
Dwarakanath & Owen 1999; A2255, Miller & Owen 2003, hereinafter MO03;
A2256, Miller et al. 2003; A2645, Owen et al. 1999;
the Shapley supercluster chains A3528, A3558 and A3571,
Venturi et al. 2000, 2001 and 2002 respectively), and the complexity of the phenomenon clearly needs more observational support.
Cluster mergers evolve over a timescale of Gyr, while typical
ages of radio sources are of the order of few times 107-108 years, therefore it is of crucial importance to identify the effects of the various stages of a merger event. For this reason
it is essential to carry out deep radio observations
of a large number of galaxy clusters, at different merger stages.
To study the effects of a major cluster merger event after the first core-core encounter on the nuclear and starburst radio emission, in this paper we present 1.4 GHz Very Large Array (VLA) observations of the cluster A3562 and the poor groups SC 1329-313 and SC 1327-312, at the eastern side of the A3558 cluster complex. In the following we will refer to the area surveyed as A3558-C. This work is part of a larger project which aims to study the influence of the ongoing merger in the core of the Shapley Concentration on the radio/optical properties of the cluster galaxies, both from a statistical point of view and through a detailed analysis of the physical properties of the extended radio galaxies. In Sect. 2 we briefly overview the optical and X-ray properties of A3558-C, with emphasis on the cluster A3562 and on the poor groups SC 1329-313 and SC 1327-312; the observations and data reduction are presented in Sect. 3; in Sect. 4 we present the 1.4 GHz radio sample and the source counts; in Sect. 5 we deal with the optical identifications and in Sect. 6 we present the general properties of the radio galaxies in this region; the results of the analysis of the radio luminosity function (RLF) for the early-type and late-type galaxy populations are given in Sect. 7; discussion and conclusions are given in Sect. 8.
We assume H0 = 100 km s-1 Mpc-1 and q0 = 0.5. If we define
h=H0/100, at the average redshift of the Shapley Concentration
(z=0.05) this leads to a linear scale of 1 arcsec = 0.67 h-1 kpc.
We will assume
.
The dynamical centre of the Shapley Supercluster can be
identified as the A3558 cluster complex, a chain of interacting
clusters located at a mean redshift z=0.0483 and spanning
7.5 h-1 Mpc (projected), almost orthogonal to the line of sight.
The chain is formed by the
three ACO (Abell et al. 1989) clusters A3558, A3562 and A3556,
and includes the two poor groups SC 1327-312 and SC 1329-313
(Fig. 1).
The A3358 cluster complex has been extensively studied over a wide range of bands, from radio wavelengths up to X-ray energies, and the physical connection and the merging stage of all clusters in this region is suggested by observational data in the radio (V2000, Venturi et al. 2003, hereinafter V2003), optical (Bardelli et al. 1994) and X-ray bands (Bardelli et al. 1996; Ettori et al. 1997).
Table 1: Cluster properties.
Table 2: Logs of the Observations.
The distribution of the hot gas in this region remarkably follows the distribution of the optical galaxies, and a detailed substructure analysis carried out by Bardelli et al. (1998a) revealed that the whole structure is characterized by a large number of subcondensations, further evidence of its dynamical activity. In addition, the galaxy distribution in the A3558 chain resembles the results of the numerical simulations carried out by Roettiger et al. (1997) for the case of a collision of two clusters. The observational scenario suggests that the whole region is the result of a major merger with the cluster A3558, seen after the first core-core encounter (Bardelli et al. 1998b, 2002). All the structure visible in the chain beyond A3558 itself, i.e. A3556, A3562 and the two small groups SC 1327-312 and SC 1329-313, would be the remains of the colliding cluster (see Fig. 1). In the region between A3558 and A3562, where the initial position of the merger shock is expected, Bardelli et al. (1998b) found an enhanced fraction of blue galaxies.
The whole A3558 cluster complex was surveyed at 22/13 cm with the Australia Telescope Compact Array (ATCA, Venturi et al. 1997; Venturi et al. 1998, V2000) and a number of interesting results emerged from the radio analysis. In particular, the outskirts of the chain, i.e. A3556 and A3562, contain the largest number of cluster radio sources and the four extended radio galaxies. Moreover, the radio luminosity function computed for elliptical galaxies over the whole complex is considerably lower that the "universal'' radio luminosity function for ellipticals derived by Ledlow & Owen (1996, hereinafter LO96), suggesting a possible connection with the cluster merger in this region. Finally, a cluster radio halo was detected at the centre of A3562 (V2000, V2003), as further evidence of the role of merger on the cluster radio emission.
The properties of A3562, SC 1327-312 and SC 1329-313 are summarised in Table 1, where we report:
The 1.4 GHz (21 cm) observations of A3562 and of the two SC groups 1327-312 and 1329-313 were carried out on 10 July 2000 with the Very Large Array (VLA), operating in the DnC configuration. The observations were carried out in continuum mode with a 50 MHz bandwidth, for a total duration of 4 h. We switched among the four fields every 4.5 min. 3C 286 was used as primary calibrator, and 1316-336 as phase calibrator. The logs of the observations are given in Table 2.
The region of interest was covered with four different pointings;
the resolution is
35.13
at the declination of the A3558 complex.
The observations were carried out using the mosaicing
facility of the VLA. Pointing 1 and
2 were chosen to be centered
respectively on the head-tail J1333-3141 in the centre of A3562, where
the radio halo lies, and on the diffuse radio source J1332-3146a in the region between A3562 and the SC 1329-313 group (V2000).
The remaining pointings were chosen to remove the
sidelobes from the confusing sources at the field edges and to ensure
uniform sensitivity over the whole region between the centre
of A3562 and the SC groups.
The data reduction was carried out using the standard
procedure (calibration, Fourier inversion, clean and restore)
of the NRAO AIPS (Astronomical Image Processing System) package.
We reduced the data and imaged each field separately. The final
images were then mosaiced (i.e. linearly combined) using the AIPS task LTESS.
The average noise in the individual final images is 0.05 mJy b-1
in all four fields.
We assume as reliable all detections with flux density peak
0.25 mJy b-1, corresponding to a 5
confidence
level. Such a limit implies a limit on the radio power of
log
(W Hz-1) = 20.83 at the average distance of A3558-C. We note that our detection limit is near the confusion
limit at the frequency and resolution of the images presented here.
To evaluate this effect, we cross-checked our detections on a
pure uniform weight image, where the confusion is considerably lower,
and considered as reliable detections only those sources passing the cross-check.
We detected a total of 174 radio sources at 1.4 GHz above the peak flux density limit of 0.25 mJy b-1. The source list is reported in Table 3, where we give:
Table 3: Source list and flux density values.
As it is clear from Table 3 most of the radio sources detected at 1.4 GHz are unresolved; only 23 radio sources are extended, i.e. 13% of the total.
Our observations confirm the presence of a radio halo at the centre of A3562 (not listed in Table 3), encompassing the head-tail radio galaxy J1333-3141.
The halo has a flux density of
= 20 mJy, a
low surface brightness (
0.175 mJy b-1) and an irregular
shape, with largest angular size of
8
.
The properties and the origin of this source are discussed in a different
paper (V2003).
We note that the region presented in this paper (A3558-C)
partly overlaps with the area covered in the ATCA survey presented in V2000. We carefully checked all sources in the common region,
and found that all differences can be accounted for either
by the different u-v coverage, resolution and/or sensitivity of the
two sets of observations. Due to the different resolutions
(
for the ATCA observations),
in a number of cases the radio emission detected with the present
observations is actually a blend of two or more sources in the ATCA 22 cm
sample. Those cases of source blending relevant to the discussion
of this paper are briefly commented in the Appendix.
We computed the source counts for our radio sample in A3558-C, to test whether the optical galaxy overdensity and the ongoing merging scenario proposed here reflect a higher number of radio sources with respect to the field radio sources counts.
Since the sensitivity in the final images of the
four fields covered by our observations is not uniform due
to the VLA primary beam attenuation, the 1.4 GHz sample
is not complete to the flux density limit of 0.25 mJy.
For this analysis we therefore considered only the
radio sources with
mJy within
a radius of 15.5 arcmin from the centre of each field.
At such a distance the primary beam attenuation of the VLA at 1.4 GHz
is reduced by a factor of two, and sources with flux density
mJy are seen as sources with
mJy before the correction. At the distance of A3558-C this
limit implies a radio power log
(W Hz-1) =
21.13. We counted 92 radio sources with S
0.5 mJy in
an area of 0.75 deg-2.
We compared our results with the radio source field counts in
Prandoni et al. (2001), who counted 1752 radio sources
with a flux density at 22 cm
mJy over an area of
25.82 deg-2. Taking into account the completeness flux density
limit of Prandoni et al. (2001) and the different area covered
in their survey,
we counted 88 radio sources, to be compared to the number
expected from the background counts, i.e. 72.3. These two numbers
differ by
20%, and the difference mainly comes from the
two flux density bins in the range 13.12-26.4 mJy, where
we found 12 radio sources, against the expected 4. This excess
is significant at a 2
level. We note that only 2 out of
the 12 radio sources belong to the Shapley Concentration.
If we exclude these two bins from our analysis, we find 76 radio
sources, while the counts from the background give 68.2,
therefore there is still a
marginal excess in our data of
10%.
In order to find as many optical counterparts as possible,
we cross-correlated the radio positions of all sources in
our sample with four different optical catalogues.
Our reference catalogue is the COSMOS/UKST Southern Sky Object
Catalogue (Yentis et al. 1992), limited to = 19.5;
for fainter magnitudes we considered also the
Super COSMOS/USKT Southern Sky Object Catalogue (Hambly et al.
2001), the APM Catalogue (Maddox et al.
1990) and the MGP catalogue (Metcalfe et al.
1994).
These catalogues have a claimed positional accuracy of
0.25
,
but given the errors that could
be introduced by transforming the sky image on the plate frame,
we adopted a mean optical positional uncertainty of 1.5 arcsec
(Unewisse et al. 1993).
The radio positional error depends on the beam size and on the
source flux density (Prandoni et al. 2000).
With the parameters of our observations we estimate an average
position uncertainty of 2.5 arcsec both in right ascension and
declination. For the faintest sources in the sample
(5)
the positional error rises to
along the
beam axis (HPBW/(2
SNR), SNR being the signal-to-noise
ratio).
To make sure that no identification was missed, we examined the photometric catalogue of optical galaxies in this region in Metcalfe et al. (1994) and we overplotted all the radio sources in our sample on the optical red Digitized Sky Survey DSS-2 images and carried out a careful visual inspection.
Given the uncertainty in the radio and optical positions,
to estimate the reliability of the optical identifications,
we adopted the parameter ,
defined as:
We considered as reliable identifications all
matches with
3. Given the extent of the radio emission we
found
3 for a number of sources, but we considered them
reliable identifications since the optical counterpart falls within the
radio isophotes (further details are given in the Appendix).
The reliability (rel) and completeness (comp) of our sample of
identified radio sources was tested following the method suggested by de Ruiter et al. (1977). We note that the reliability represents the
fraction of true, i.e. non spurious, optical identifications in the sample,
while the completeness provides the fraction of true identifications found
with respect to the total number of IDs in the sample.
For = 3 we found rel = 96.3% and comp = 97.8%; while
for
= 2 we have rel = 99% and comp = 68.3%.
We note that completeness drops considerably going from
= 3 to
= 2. For this reason, and given the purpose of the
present paper (see Sects. 6.1, 6.3,
7.1 and 7.2), we consider
= 3 as the most appropriate choice.
The list of the radio-optical identification is reported in Table 4, where we give:
Table 4: Optical identifications.
The morphological classification of the optical objects given in Table 4 was done by inspection of the DSS-2 images. The redshift information is taken from Bardelli et al. (1994, 1998b) and Metcalfe et al. (1994).
![]() |
Figure 2:
1.4 GHz radio contours of the 14 late-type radio galaxies in
A3558-C overlaid on the DSS-2 optical frame. Radio contours are as follows.
For J1330-3209: -0.25, 0.25, 0.30, 0.35, 0.50, 1.00, 2.00 mJy b-1;
for J1332-3152a: -0.25, 0.25, 0.30, 0.50, 1.00, 2.00 mJy b-1;
for J1335-3133: -0.50, 0.50, 0.75, 1.00, 1.50, 2.00 mJy b-1;
for all remaining radio galaxies:
-0.25, 0.25 0.50, 1.00, 2.00 mJy b-1;
the restoring beam is
![]() ![]() ![]() ![]() |
Open with DEXTER |
![]() |
Figure 2: continued. |
Open with DEXTER |
![]() |
Figure 3:
1.4 GHz radio contours of the early-type radio galaxies in
A3558-C overlaid on the DSS-2 optical frame. Radio contours are: -0.175, 0.175,
0.3, 0.6, 1, 2, 4, 8, 16 etc. mJy b-1. For J1330-3146 and J1334-3126b
the lowest contour is -0.3, 0.3 mJy b-1.
The restoring beam is
![]() ![]() ![]() ![]() |
Open with DEXTER |
![]() |
Figure 3: continued. |
Open with DEXTER |
![]() |
Figure 4:
1.4 GHz radio contours of the A3558-C region between the
A3562 central radio halo and the extended radio galaxy J1332-3146a,
overlaid on the optical DSS-2 red frame.
Contours are -0.15, 0.15, 0.3, 0.6, 1, 2, 4, 8, 16, 32, 64, 128, 250 mJy b-1. The restoring beam in the image is
![]() ![]() ![]() ![]() |
Open with DEXTER |
We found 68 identifications, corresponding to 40% of
our radio source sample. Among these, 33 (48% of the identified sources)
are located at the redshift of the
Shapley Concentration (velocity range
11 000-17 500 km s-1,
Bardelli et al. 1998b).
The sample of 33 optically identified radio sources in A3558-C includes 18 early-type galaxies and 14 spirals. The optical morphology of J1333-3124 is unavailable (see Table 4).
In Figs. 2 and 3 we show the 1.4 GHz radio contours of the late- and early-type radio galaxies, overlaid on the DSS-2 optical frame. The radio galaxy J1332-3146a is shown separately in Fig. 5; the radio halo at the centre of A3562, including the radio galaxy J1333-3141 is given in Fig. 4; J1333-3124 is included among the early-type galaxies (Fig. 3).
In Fig. 6 we show the location of the A3558-C early- and late-type radio galaxies listed in Table 4, overlaid on the 1.4 GHz radio contours of the same region. No difference in the bidimensional distribution of these two classes is obvious from the figure.
In a search for possible segregation effects in the location of the
33 radio galaxies detected in this survey,
we examined the velocity distribution of the optical counterparts, and compared
it to that of all optical galaxies belonging to the A3558-C region covered
in our survey. The optical catalogue was
extracted from the sample in Bardelli et al. (1994, 1998b).
The radio galaxies appear to be uniformly distributed over the Shapley supercluster
velocity range, with a peak of nine objects at 13 000 km s-1
(Fig. 7).
Six of them belong to the SC 1329-313 group and in particular to the T520 subclump (Bardelli et al. 1998a).
A remarkable feature of the radio emission in A3558-C is the very low brightness extended tail associated with the radio galaxy J1332-3146a. In Fig. 4 the radio contours of the A3558-C region between the radio halo at the centre of A3562 and J1332-3146a are superposed on the DSS-2 optical frame.
J1332-3146a is identified with the cluster galaxy #11744
( = 14.96 and velocity v = 13 107 km s-1, see Table 4),
the brightest galaxy in the group SC 1329-313. The projected
angular size of the radio emission is
,
corresponding to
240
160 kpc. The radio power is
log
(W Hz-1) = 22.52 and its surface
brightness is
0.16 mJy b-1.
We note that the X-ray emission in this region is elongated in the direction of A3562, and compressed towards SC 1327-312, and J1332-3146a is located at the border of the X-ray emission of the SC 1329 group, as is clear from Fig. 5.
The presence of extended emission associated with J1332-3146a was suggested
by inspection of 843 MHz Molonglo Observatory Synthes Telescope (MOST)
observations and of the NVSS 1.4 GHz image, where the source has a projected
angular size of
(V2000).
The overall morphology in our image (Fig. 4)
is in very good agreement with the NVSS image.
J1332-3146a was detected as point-like with the ATCA both at 22 cm
and 13 cm, at the resolution of a few arcseconds, and
the derived spectral index is
= 0.81 (V2000).
We note that the source was labelled J1332-3146 in V2000.
The compact morphology and steep spectrum at high resolution seem to rule
out any connection between the low brightness extended emission and an
active nucleus. In other words, there is no indication that the extended
emission imaged with the observations presented here is a tail of a
head-tail or wide-angle tail radio source.
Inspection of the radio emission shown in Fig. 4
suggests some important considerations. In particular,
(a) the extension of J1332-3146a points towards the radio halo at
the centre of A3562; (b) the radio halo is characterised by a
filament pointing South-West, towards J1332-3146a;
(c) positive residuals of radio emission are clearly
visible in the region between the radio halo and J1332-3146a.
Excluding the strongest point sources (with flux density
),
these residuals account for several mJy.
It is possible that the extended emission in J1332-3146a is:
An indicator of starburst activity is the presence
of radio emission at power levels of the order
1023 h-2 W Hz-1(see Condon et al. 2002 for a recent discussion).
The majority of the A3558-C radio galaxies in our list has radio power
below this threshold. In particular, 12 out of 18 radio emitting ellipticals
have log
(W Hz-1) < 21.78, the lower limit of the
radio luminosity function for AGNs derived by LO96 (scaled to the cosmology
adopted in our paper) discussed in Sect. 7.1. Among the
spiral galaxies with associated radio emission, they all have
log
(W Hz-1)
22.25.
Including the radio galaxy J1333-3124, whose optical counterpart
has no morphological classification, the total number of candidate
starburst radio galaxies in our sample is therefore 26.
A detailed optical study of the spectral properties of the galaxies
in A3558-C shows that the region between A3562 and the
SC groups is populated by a very large fraction of blue galaxies (Bardelli et al. 1998b).
To quantify this effect we considered the (B-R) colours of
the photometric sample of optical galaxies in this region of Metcalfe et al.
(1994): from a vs. (B-R) plot we found that the red sequence
is at (B-R)
2 and we set (B-R) < 1.7 as the
limit to define a blue object.
We cross-correlated our sample of faint radio galaxies with the
sample of Metcalfe et al. (1994) and found that
4 spirals and 7 ellipticals are blue.
Beyond that, we note that the (B-R) values for all the radio galaxies
in A3558-C are lower than the average value for A3558-C [
(B-R)
2],
with few very extreme cases (see Table 4). Thus, for half
of the faint radio sources in the region under study, indication of starburst
radio emission is supported by photometric information. Assuming that there is no
contribution from an active nucleus, the star formation rates (SFR)
deduced on the basis of the radio emission are in the range
SFR
yr-1. This estimate
was made using the empirical relation between SFR and radio luminosity
in Yun et al. (2001), after scaling our radio luminosity
to the cosmology used in their paper.
We compared our results on A3558-C with those obtained by MO03 for A2255, whose radio emission was interpreted in terms of increased radio AGN activity and star formation as consequence of the cluster merger.
For a proper comparison we needed to apply some transformations and corrections to our data. In particular:
![]() |
Figure 5:
1.4 GHz VLA radio emission from the group SC 1329-313 (grey scale)
superposed to the ROSAT X-ray emission. The extended radio galaxy
J1332-3146a is located just outside the X-ray peak, in the
North-East direction.
The FWHM of the restoring beam of the radio image is
![]() ![]() ![]() ![]() |
Open with DEXTER |
![]() |
Figure 6: Location of the Shapley Concentration optical counterparts overlaid on the 1.4 GHz radio contours of the A3562 and SC groups region. Triangles represent late-type galaxies and crosses stand for early-type galaxies. The radio contours are -0.85, 0.85, 6.80, 13.60 and 54.40 mJy b-1. The galaxy without optical classification was included among the early-type galaxies. |
Open with DEXTER |
![]() |
Figure 7: Histogram of the velocity distribution of the radio galaxies in the A3562 and SC groups region given in Table 4 (black bins), compared to the velocity distribution of all galaxies in the Shapley Concentration. The width of each velocity bin is 300 km s-1. |
Open with DEXTER |
Table 5: Radio-optical galaxy counts.
Not surprisingly, the ratio
increases
going from the faint to the bright optical bin both in
A3558-C and in A2255. If we take into account the associated errors,
there is only marginal evidence of enhanced fraction of radio emitting
galaxies in A3558-C and in A2255 compared to the other clusters
considered in MO03.
The radio luminosity function (RLF) is a powerful statistical tool to investigate the radio properties of a galaxy population. To understand if the ongoing major merger in A3558-C has a significant effect on the radio emission of the cluster galaxy population, it is important to compare the radio luminosity function (RLF) for galaxies in this merging environment with the mean RLF for galaxies in normal clusters and in the field.
With this aim we computed the RLF for the radio galaxies in the A3558-C and compared our results with those obtained by LO96 and by Gavazzi & Boselli (1999, hereafter GB99) respectively for early- and late-type galaxies.
For the comparison we adopted the cosmology used by these
authors and scaled the radio powers of our sample. We corrected
our magnitudes as described in point (i) of Sect. 6.3.
We computed the number of radio galaxies expected in the A3558-C region on the basis of the "universal'' RLF derived by LO96 and compared it to the number of objects actually detected in our survey.
The analysis carried out by LO96
includes radio galaxies with log
(W Hz-1)
22.03
and optical counterparts brighter than MR=-20.5. This magnitude limit
corresponds to mR=16.05 at the distance of the Shapley supercluster.
We estimated that the total number of early-type galaxies in
the A3558-C region located at the distance of the Shapley Concentration
is 65 (see V2000 for further details). On the basis of LO96,
the fraction of early-type galaxies with
expected to be
radio loud at a power level log
(W Hz-1)
22.03
is 6 (
9.2%), in good agreement with the
seven radio galaxies in our sample matching the LO96 constraints.
Conversely, V2000 found that the RLF for early-type galaxies of the whole A3558 complex, including the cluster A3558 and the westernmost A3556, is significantly lower than the "universal'' RLF by LO96. These results suggest that the effect of cluster mergers on the AGN-type radio emission may be a very complex phenomenon, possibly depending on the stage of the merger. This issue will be further discussed in Sect. 8.
The role of environment on the radio emission of spiral galaxies has been investigated in a number of papers. Jaffe & Perola (1976) found that radio emitting spirals in the Coma cluster have a radio excess compared to field galaxies. Gavazzi & Jaffe (1986) confirmed these results by comparing the RLF of late-type galaxies within and outside rich clusters. GB99 computed the RLF of spiral galaxies, in terms of radio-optical flux density ratio, in nearby different environments (rich and poor clusters, and the field), and found that late-type galaxies in rich clusters develop radio sources more frequently than galaxies in poor clusters and in the field. They also found a correlation between the radio excess and the velocity deviations with respect to the cluster average velocity. GB99 suggested that these results are coherent with a ram pressure scenario: galaxies in fast motion through the intracluster medium experience enough dynamical pressure to compress their magnetic field on the up-stream side, form a tail-like radio structure on the down-stream side and produce a net enhancement of the radio continuum activity.
We addressed the question of whether the late-type galaxy population
in the merging environment of the A3558-C region
behaves like those in rich clusters, or if it shows even more
enhanced radio excess.
To this aim we compared the RLF of late-type galaxies in this region
with the results obtained by GB99. We
extracted a subsample of 209 objects from the GB99 sample, with
Zwicky magnitude mz < 15.7 and flux density
2.25 mJy, corresponding to the 5
level of the NVSS survey (radio data in GB99 are taken mostly from this survey).
This flux density limit implies a radio power limit of
log
(W Hz-1) = 20.74 at the distance of the Cancer cluster,
the nearest in their sample (z=0.015).
For a proper comparison, we computed the magnitude limit corresponding
to the mz limit in GB99. First we converted mz in mB according to
the relationship
mB=mz - 0.35 (Gaztañaga & Dalton 2000), assuming
(Sect. 6.3). Then we applied a distance
modulus of 1.5 mag and a 0.24 mag correction for
the galactic absorption (Schlegel et al. 1998). We obtained
a limit of
= 17.09, where
is the magnitude
corrected as described above.
For each late-type radio galaxy in A3558-C we applied a correction for the internal extintion. This latter was determined according to Gavazzi & Boselli (1996) using an average value of 0.60 for the DB(type) coefficient, which corresponds to Sb galaxies in the B band.
![]() |
Figure 8: Distributions of the RB radio/optical ratios for the late-type galaxies in A3558-C, A1367, Coma, Cancer, A262 and for isolated galaxies in the Coma supercluster. |
Open with DEXTER |
We selected, at the same radio power limit as GB99, a sample of spiral galaxies
in A3558-C with
17.09.
The resulting sample includes 13 objects and is presented in Table 6.
Note that the radio powers in Table 6 are scaled to the cosmology adopted
by GB99.
Table 6: Sample of late-type radio galaxies used for the RLF.
For each radio galaxy of our sample we computed the radio/optical ratio,
defined in GB99 as
RB =
/
,
where k = 4.44
106 is the factor appropriate to transform
in mJy the
magnitude. We note that this quantity
is independent of distance. According to Gavazzi et al. (1996)
RB gives the ratio of the radio emission per unit light emitted
by the relatively young stellar population.
We compared the distribution of RB ratios for the late-type
galaxy sample in A3558-C to the subsample
extracted from GB99 (Fig. 8).
That the RB distribution of our sample
does not change significantly if we use DB(type) coefficients
corresponding to morphological types different from Sb.
The limited number of galaxies in A3558-C does not allow us to draw firm conclusions, however some considerations can be made. The most remarkable features in Fig. 8 are the peaked distribution (in the first bin) for the galaxies in poor environments, and the presence of galaxies (though a limited number) with a strong excess of radio emission both in rich and poor environments.
Considering Poisson errors in each bin, the distribution of
radio late-type galaxies in A3558-C is substantially flat up to
RB = 2, similar to the distributions in Coma and A1367.
We estimated the similarity between A3558-C and Coma
applying a Kolmogoroff-Smirnov (KS) test to the two distributions and
found that the probability that they are the same distribution is
92.4%. A KS test applied to A3558-C and the isolated galaxies
gives a probability of only
3.6%.
The late-type galaxies with RB
4 are missing in A3558-C
(respectively 2/15 and 2/22 for A1367 and Coma), however this could be due to a lack of statistics, since only 13 spirals in A3558-C are included in the analysis.
The statistical properties of the radio emission from spiral galaxies in A3558-C are similar to those in rich and dynamically evolved environments.
In this paper we presented deep 1.4 GHz VLA observations of the major cluster merger in the A3558 complex. The area under study, A3558-C, defined as the region between the centres of the two Abell clusters A3558 and A3562, including also the two groups SC 1329-213 and SC 1327-312, is thought to have recently experienced a major merger between two massive clusters. What we see now is expected to be the result of the first core-core encounter. The observational properties in this region, together with numerical simulations, suggest that A3558 is the main cluster, while the whole chain, beyond A3558, is the remains of the colliding cluster (Bardelli et al. 2002).
A picture is emerging in which radio AGN and starburst activity, radio relics and halos, or the lack thereof, are signatures of cluster mergers at different stages. In particular, Venturi et al. (2002) proposed an evolutionary merger sequence to account for the diversity in the radio properties of the three main merging cluster systems in the core of the Shapley Concentration; Kempner & Sarazin (2001) postulated that radio halos and relics may form at different times during mergers; MO03 explained the different fraction of radio-emitting galaxies (starburst and AGNs) in a cluster sample as due to different merger stages. With this study we have a unique opportunity to connect the observed properties in the radio band with a well defined cluster merger stage. This is of crucial importance for a better understanding of the complex effects of cluster mergers, with particular emphasis on the stage of the merger.
The most relevant results of our analysis can be summarised as follows:
V2000 showed that the RLF for early-type galaxies in the whole A3558-C shows a deficit of radio galaxies compared to the "universal'' RLF presented in LO96 (V2000), over the whole power range. On the other hand, the RLF for AGNs presented here matches the expectations of LO96; furthermore the outskirts of the chain (A3556 and A3562) contain the largest fraction of Shapley radio galaxies (see also Sect. 2). This suggests that A3558 itself, the most massive cluster in the chain, is the main cause of the lack of radio sources in the RLF found in V2000. A possible explanation is the key role of A3558 in the merger, i.e. it is experiencing the most dramatic effects of the merger, being the result of a head-on interaction between the cores of the two colliding clusters. If our interpretation is correct, then the role of cluster merger on the radio emission from AGNs may depend on the age, strength and type of impact of the merger.
Optical photometric information on the faint population of radio galaxies in A3558-C confirms that at least 50% of these objects are most likely starburst candidates. However, a radio/optical analysis carried out following MO03 provides only weak evidence that the fraction of radio-emitting galaxies in A3558-C is higher than in non-merging environments.
The statistical results on the late-type galaxies show that the radio emission in the A3558-C spirals is similar to that in rich and dynamically evolved clusters. This suggests that the radio emission in spiral galaxies may be one of the first "parameters'' to react to a cluster merger event.
In V2003 we showed that the radio halo at the centre of
A3562 is consistent with a reacceleration phase which started
108 years ago. This ongoing merger is therefore
advanced, in the sense that the core-core encounter has
already taken place, but it is still young if compared to
the total duration expected for a cluster merger, i.e. 109 yr.
From our global study of the A3558 complex (V2000, V2003 and the
present paper), we can conclude that cluster mergers provide
the necessary energy to lead to the formation of radio halos,
however their influence on the radio emission from individual
cluster galaxies is more uncertain.
In particular, our data provide only marginal support for the claim
of enhanced starburst emission made by MO03. Moreover, the radio emission
of AGN origin remarkably is affected only in the region which has
experienced the most violent consequences of the core-core encounter,
where we detected a lack of AGN-type radio sources compared to
the "universal" luminosity function (V2000). Finally, the statistical
properties of the radio emission in spirals in an on-going merger
are similar to those in dynamically evolved clusters. This
suggests that the radio emission in spirals has already "reacted"
to the merger event over a timescale of 108 yr.
Acknowledgements
This work has been partially supported by the Italian Space Agency grants ASI-I-R-105-00, ASI-I-R-037-01 and ASI-I-R-063-02, and by the Italian Ministery (MIUR) grant COFIN2001 "Clusters and groups of galaxies: the interplay between dark and baryonic matter". NRAO is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
This work has made use of the NASA/IPAC Extragalactic Database NED which is operated by the JPL, California Institute of Technology, under contract with the National Aeronautics and Space Administration.
- J1329-3122a: this radio source is the blend of two sources
in the ATCA 22 cm catalogue: the pointlike J1329-3122, associated with
a 18.54-mag galaxy, and the FRII J1329-3123, identified with the elliptical
cluster galaxy #10178 ( = 19.08). The location of this latter is
coincident with the radio emission peak of the 1.4 GHz VLA image,
so we consider J1329-3122a associated with the elliptical cluster galaxy;
- J1330-3143b: this source is identified with the spiral #10869, but other two cluster galaxies fall within the radio isophotes of this extended source.
- J1330-3127: this identification is uncertain since the candidate optical counterpart, which falls within the radio contours, is misplaced with respect to the radio emission peak.
- J1331-3139: this source is the blend of the two J1331-3139a and J1331-3139b radio sources of the ATCA-22 cm catalogue. The latter is identified with the 17.97-mag quasar.
- J1331-3143: this source is probably the blend of more sources.
A galaxy with = 16.82 and z = 0.044 is located within the radio
contours, at
45 arcsec from the radio emission peak.
- J1331-3155b: a spiral galaxy, with = 15.39 and v = 4505 km s-1 is located at the edge of the radio contours, at
37 arcsec from the emission peak.
- J1332-3141a: a cluster galaxy with = 16.96 and v = 10 732 km s-1 lies within the radio contours of the source, at
50 arcsec from the emission peak.
- J1334-3132: this source is the blend of the three ATCA 22 cm sources J1334-3132a, J1334-3132b e J1334-3132c. J1334-3132c is associated with the 17.30-mag elliptical galaxy #13281. This galaxy falls within the radio contours of the 1.4 GHz VLA image, but it is dislocated with respect to the emission peak.