A&A 419, 215-224 (2004)
DOI: 10.1051/0004-6361:20035647
H. Hartman 1 - T. Gull 2 - S. Johansson 1 - N. Smith 3, - HST Eta Carinae Treasury Project Team
1 - Atomic Astrophysics, Lund Observatory, Lund University,
Box 43, 221 00 Lund, Sweden
2 - Laboratory for Astronomy and
Solar Physics, Code 681, Goddard Space Flight Center, Greenbelt,
MD 20771, USA
3 - CASA, 389 UCB, University of Colorado, Boulder, CO 80309, USA
Received 7 November 2003 / Accepted 10 February 2004
Abstract
We have obtained deep spectra from 1640 to 10 100 Å with the Space Telescope Imaging Spectrograph (STIS) of the
strontium filament, a largely neutral emission nebulosity lying
close to the very luminous star Eta Carinae and showing an uncommon
spectrum. Over 600 emission
lines, both permitted and forbidden, have been identified. The
majority originates from neutral or singly-ionized iron group
elements (Sc, Ti, V, Cr, Mn, Fe, Co, Ni). Sr is the only neutron
capture element detected. The presence of Sr II, numerous strong
Ti II and V II lines and the dominance of Fe I over Fe II are
notable discoveries. While emission lines of hydrogen, helium, and
nitrogen are associable with other spatial structures at other
velocities within the Homunculus, no emission lines from these
elements correspond to the spatial structure or velocity of the
Sr filament. Moreover, no identified Sr filament
emission line requires an ionization or excitation energy above
approximately 8 eV. Ionized gas extends spatially along the
aperture, oriented along the polar axis of the Homunculus, and in
velocity around the strontium filament. We suggest that the
strontium filament is shielded from ultraviolet radiation at
energies above 8 eV, but is intensely irradiated by the central
star at wavelengths longward of 1500 Å.
Key words: line: identification - stars: circumstellar matter - stars: kinematics - stars: individual: Eta Carinae
![]() |
Figure 1:
ACS/HRC image of ![]() ![]() |
Open with DEXTER |
Damineli (1996) identified the
5.52-year period in the high-excitation nebular and stellar
emission lines of
Car and its surrounding nebulosity. In a
long-term monitoring series of programs to understand this
variability, the Weigelt blobs B and D, along with
Car,
have been observed with HST/STIS at nearly annual intervals since
1998 (Gull et al. 2001; Davidson et al. 1999).
Over 2000 emission lines of
the Weigelt blobs B and D were identified in the spectrum between
1700 Å and 10300 Å by Zethson (2001). Changes between the
spectroscopic minimum in 1998 and the broad maximum during 1999
and 2000 demonstrate that lines of higher ionization disappear
during the spectroscopic minimum only to reappear as the system
recovers. Many H Ly
-pumped Fe II lines
appear during the maximum
(Zethson 2001; Johansson & Hamann 1993), and disappear during the minimum. The
Fe II 2507, 2509 Å lines are the most enhanced of these
fluorescence lines, and they feed long-lived Fe II states involved
in a closed radiative cycle showing stimulated emission (Johansson & Letokhov 2003).
Verner et al. (2002) used the CLOUDY model to
predict the optical Fe II emission fluxes of the Weigelt B and D
blobs during the spectroscopic minimum event of 1998.
During a preliminary test for the Homunculus mapping program in
the 6400-7000 Å region planned as a STIS GTO Key Project (HST proposal 8483), we noticed some very faint, narrow emission lines
located 1.5
to the Northwest of
Car. The 1
long
emission filament appeared not to be associated with any known
structure in
Car. Yet the spatial and velocity structure
was similar for these lines and
indicated that they must originate from the same volume.
Zethson et al. (2001) identified twenty of twenty one lines in the
6400-7000 Å region, all originating from a structure moving at
-100 km s-1. As the most spectacular discovery was the first
identification of two [Sr II] lines, the filament became
known as the Sr filament. Peculiarly, no lines of hydrogen
or helium were identified in the spectrum of this system. While
lines of Fe II were not identified, lines of Fe I
were. However, from the identifications of this wavelength limited
spectrum it was not possible to conclude whether these emission
lines were due to a selective excitation mechanism or to different
elemental abundances.
The limited spectrum of the Sr filament differed remarkably
from similar spectra of other emission line nebular structures
around
Car. This fact led to additional observations and
line identifications in other wavelength regions. In the present
paper we report on all HST observations obtained so far of the
Sr filament and tabulate all the measured emission lines.
Nearly 600 lines have been identified, and only a few strong lines remain
unidentified. We also discuss the peculiarities found in the
spectrum in terms of apparent enhancements and depletions in
elemental abundances, as well as clear indications of special
ionization and excitation conditions in the filament.
The initial 6480 to 7000 Å spectrum of the Sr filament
differed markedly from spectra of other emission line structures
around
Car, and indeed from spectra of other nebulae.
[Sr II] emission is not known to have been observed in
other emission nebulae. Given the uniqueness of this nebular
spectrum, we followed up with a series of observations, first to
detect Sr II lines near 4000 Å, then other nebular
emission lines, within visits scheduled for
Car.
Information on these visits are listed in Table 1. The two
resonance lines of Sr II at 4078 Å and 4216 Å were
observed in emission. Bautista et al. (2002) found the Sr II line
ratios to be consistent with a gas having electron densities of
107 cm-3 in a predominantly neutral region. We extended
the spectral coverage across the entire range of the STIS CCD
(1640 to 10 100 Å), and examined the spectroscopic maps of the
Homunculus in spectral intervals containing H
and H
to determine the spatial extent of the peculiar emission. The
observations were done during several HST visits. As the HST spacecraft orientation changes throughout the year, we had to
accept observations through the long aperture at very different
position angles (Fig. 1). When possible, the aperture was
centered on a common position offset
at Position Angle
from
Car. Enough overlap in repeat spectral
coverage (Table 1) allowed us to gain significant information on
the spatial extent of the Sr filament.
Table 1: Log of observations with the STIS.
Direct imagery of the Sr filament is not possible through the broad-bandpass filters available in the WFPC2 or the ACS cameras. The relatively weak emission lines are overwhelmed by dust-scattered starlight throughout the Homunculus. Other nebular emission structures with different photo-excitations, different spatial and velocity intervals are located in, or close to, the line of sight towards the Sr filament. With direct imagery as in Fig. 1 (Smith et al. 2004; Morse et al. 1998), we can trace the dusty structures of the Homunculus by the scattered, red starlight. Polarization measures using WFPC2 imagery (Schulte-Ladbeck et al. 1999; King et al. 2002) confirm the scattering properties of this light. The Little Homunculus was detected by multiple emission lines of Fe II, Cr II, etc. in the near-ultraviolet, and may contribute to the "purple haze", associated with the feature commonly called the "Fan'' within the Northwest lobe (Smith et al. 2004). Within the skirt, or the gas and dust structure located between the two lobes, bright emission lines extend over significant regions. Inspection of these emission lines indicate that some emission extends, in velocity and space, around the Sr filament (Fig. 2). The Sr filament is best mapped with high spatial and moderate spectral resolution as produced by the STIS CCD moderate dispersion modes. Ground-based observations are currently limited to half-arcsecond seeing with much scattered light from the central star. The Sr filament structure then becomes confused with other nebular emission and stellar emission.
![]() |
Figure 2:
Position-velocity diagrams at the location of the
strontium filament seen in several different emission lines, with
two different slit orientations. The top row shows spectra taken
in March 2000 with the STIS slit at PA =
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Open with DEXTER |
Given that these observations occur late in the broad spectroscopic maximum (when fluxes of all nebular lines appear to be relatively constant), we do not anticipate significant changes in the excitation of the Sr-filament. The spectrum of the Weigelt Blobs, being at an order of magnitude closer to the Central Source, shows little change in the low-excitation emission lines of e.g. Fe II and Ni II across the entire 5.52-year cycle. Modeling by Verner et al (2002 and in preparation) demonstrates that the low-excitation emission lines are due largely to UV radiation longward of Lyman alpha. Most excitation of the Sr filament appears to be due to mid-UV and near-UV, which changes little across the minimum. Smith et al. (2000) investigated the photometric variability in the "purple haze" in WFPC2 pictures and found no evidence for variability that one might associate with the Sr filament, even during the 5.5 year cycle and the brightening of the star.
Where possible we repeated some spectral
overlap to check for variability in emission line fluxes. The
specific dates, HST programs, offsets from
Car, position
angle, STIS aperture and spectral coverage are listed in Table 1.
Locations of the aperture positions are overlaid on an Advanced
Camera for Surveys (ACS) High Resolution Camera (HRC) ultraviolet
image of the Homunculus
(Smith et al. 2004) in Fig. 1.
The discovery spectrum was recorded on February 21, 1999 under
program 8036 (Zethson et al. 2001). Under program 8327, deep spectra were
recorded on March 13, 2000 for two purposes: 1) we wanted deeper
exposures of the Homunculus to infer the spatial structure of the
lobes by the changes in velocity with position of locally-emitted
narrow nebular emission lines and the locally-absorbed narrow
absorption lines of Ca II (Davidson et al. 2001), and 2) we wanted
to extend the spectral coverage of the Sr filament to other
spectral regions as we anticipated that emission lines from
additional elements in neutral and singly-ionized states would be
detected. As most emission lines in the Homunculus are marginally
resolved with the CCD G750M, G430M and G230MB gratings and the
aperture, a significant gain in
limiting flux was obtained by using the
aperture. For this visit with STIS, we placed
Car
behind the F2 fiducial (
wide), to prevent saturation
of the CCD by the very bright star. On March 21, 2000 (program
8483), the Homunculus was mapped with the STIS using the
aperture and the grating settings for
6480-7000 Å at
spacing and for 4818-5100 Å at
spacing. The overall structure, with emphasis on the
internal ionized regions called the Little Homunculus, is discussed by
Ishibashi et al. (2003). We used these same data to map the
Sr filament. Deep spectra were recorded in April 2001
(program 8619) at wavelengths selected to obtain the fluxes of
Sr II emission lines near 4100 Å, to measure the width of
the Sr filament, and to detect additional emission lines. On
November 27, 2001 (Program 8619), we recorded deep exposures from
3022-10135 Å and 2480-2633 Å as that was the region of the
spectrum where many emission lines were predicted, including the
Fe II lines at 2507 Å and 2509 Å. Based upon the
non-detection of the Lyman-alpha-pumped Fe II lines at 2507 and
2509 Å, we suspected that little or no hydrogen photo-ionizing
radiation was impinging upon the Sr filament. We expected
that few emission lines would be detected below 2480 Å. On
December 16, 2002, we extended spectral coverage from 3052 Å to
1640 Å to gain full spectral coverage. No lines were detected
shortward of 2489.7 Å, which is an Fe I line of multiplet uv9.
However, we caution the reader that the CCD sensitivity decreases
rapidly below 2500 Å. Deeper exposures would be possible with the
MAMA detectors, likely in the E230M mode.
Figure 2 shows the kinematic structure at the position of the
strontium filament. Two different position angles, perpendicular
to one another, are chosen to sample its full spatial extent (see
Fig. 1). The resonance line Sr II 4078 is the
brightest of the four lines from Sr+ that have been detected in
our data (Zethson et al. 2001).
[Ca II] is a much brighter
line that traces gas in a similar ionization state; Ca+ ranges
from 6.1 to 11.9 eV, while Sr+ has a range of 5.7 to 11.0 eV.
Indeed, contours of [Ca II] superposed over Sr II
emission show that both lines seem to trace the same
gas
. The
[Ca II] emission shows that the Sr filament is more than
just a single thin "filament'', and has a spatial extent of
1
5 along the polar axis of the Homunculus, and
2
in the direction perpendicular to the polar axis.
Thus, the Sr filament occupies the same spatial extent as the
"purple haze'' seen in HST images of
Car
(Smith et al. 2004; Morse et al. 1998). The Sr filament is constrained to
heliocentric velocities between -50 and -300 km s-1, and
is probably in or near the equatorial plane. It appears to have
two main velocity components; one at about -100 km s-1,
with a velocity structure tilted so that emission becomes more
blueshifted with increasing separation from the star (in March
2000), and another feature at about -240 km s-1 with the
opposite tilt. The -100 km s-1 component is brighter at
most positions (at least in Sr II), and dominates the
emission spectrum listed in Table 2. Interestingly, fainter
extended emission in [Ca II] suggests that both these
velocity components may be part of a single closed structure,
forming a ring or loop in velocity space, especially in the
November 2001 spectra.
Emission from [Ni II] 7379, on the other hand,
shows subtle differences compared to both Sr II and [Ca
II]. It has two remarkably straight velocity components (top
panel in Fig. 2), both tilted in the same sense, both with
blueshift increasing with separation from the star.
Davidson et al. (2001) suggested that these two velocity components traced
gas in the equatorial plane with two different ages, originating
in the Great Eruption and the 1890 event (see Humphreys et al. 1999).
Some of the [Ni II] emission coincides with Sr
II and [Ca II], but some does not. In particular, the
diffuse [Ni II] emission near position = 0
and -150 km s-1 in the bottom panel of Fig. 2 seems to fill in the
gap between the two velocity components of Sr II and [Ca II]. Perhaps this makes sense, since Ni+ occupies
ionization zones between 7.6 and 18.2 eV, only partly overlapping
with Sr+ and Ca+. The velocity components of [Ni II]
and [N II] at -40 km s-1 and redshifted velocities up
to -300 km s-1 trace the northwest polar lobes of the
Homunculus and Little Homunculus, respectively
(Smith et al. 2004; Ishibashi et al. 2003). [N II] emission is only seen in
these polar features, and is absent in the equatorial material,
while [Ni II] is seen in both. These polar structures must
be exposed to radiation above 12 eV, since Sr II and
[Ca II] are absent. This reinforces the idea that the
strontium filament is somehow shielded from radiation above 12 eV
(even though the ionization potential of N is 14.5 eV, it can be
ionized from the excited 2D state by photons at
12.1 eV).
As noted above, the blueshifted velocities imply that the
strontium filament may reside in or near the equatorial plane -
this may be an important factor for understanding its unusual
excitation. On the one hand, various clues suggest that Car has an asymmetric radiation field, with more UV radiation
escaping the stellar wind at low latitudes near the equator where
the wind is thinner (Smith et al. 2003a,2004),
at least during its "normal''
high-excitation state between spectroscopic events. On the other
hand, there may be a considerable column of material between the
star and the strontium filament, including the Weigelt objects and
a larger-scale disk or torus, which may absorb all ionizing
photons along that path but apparently transmits photons below 12
eV. In any case, both the strontium filament and the Weigelt
objects appear to occupy a special azimuthal direction relative to
Car. In general, the subtle variations in emission
structure from one tracer to the next suggest that the strontium
filament is a low-ionization region with stratified ionization
zones. This will be relevant in future efforts to model the
emission spectrum (Bautista et al., in preparation).
During the April 2001 observation, the slit was oriented in a way that a region NE of
the filament (i.e.
north of the star) was observed. This spatial region close
to the filament shows a weak scattered continuum. In this continuum can be
seen absorption lines from the allowed Sr II lines
4078, 4216 and the
Ca I
4227 line. For this slit orientation, there are only a few wavelength
regions observed, but this absorption is not observed in any other lines. For
all of the transitions showing this absorption, the lower level is the ground
state, which might indicate that this is a low excitation region.
![]() |
Figure 3:
2D spectrum of the filament at two different slit
orientations at nearly orthogonal angles, March 2000 and November
2001, respectively.
The vertical stretch in the upper panel is 2
![]() ![]() |
Open with DEXTER |
Some observed emission lines are likely the composite of emission from a number of regions along line of sight. The imaging properties of STIS along the aperture and the radial velocity shifts in the spectral direction enable us to disentangle the nebular emission for several kinematically different systems, as discussed in Sect. 3 above and seen in Fig. 2. Lines belonging to the filament show a Doppler shift of about -100 km s-1 at the center of the filament.
![]() |
Figure 4:
Upper panel: subsection of STIS nebular spectrum centered
upon the Sr filament. The STIS
![]() ![]() |
Open with DEXTER |
The observed lines in Table 2 were measured in vacuo with
heliocentric velocity corrections (Col. 1) and, where
identified, include laboratory wavelengths (Col. 3). The
difference between the two is converted to a velocity (km s-1,
Col. 2). The velocities are derived from the nov01 spectrum
except for a few cases, when the mar00 (2630-3025 Å) spectra are
used. The spectra include emission lines from other nebular
structures in line of sight, but only the lines associated with
the strontium filament are
included in the linelist. Some lines have measured
velocities deviating from -100 km s-1 as they are either affected
by absorption or blended by other lines. Blended lines, or lines
with possible multiple identifications, are listed more than once
with the identified wavelength, but with alternate wavelengths
corresponding to the alternate line identifications. These lines
are associated with the strontium filament despite the deviant
Doppler velocity. The lines are identified by the species (e.g.
Fe I), multiplet number and transition in Cols. 4-6. The
transition is represented by the lower and upper level, using the
LS term notation in Moore's tables of multiplets and energy
levels. Thus, the term notation is preceded by a small letter
a, b, c, etc. for even parity configurations and z, y, x, etc. for
odd-parity configurations. If the multiplet is missing in Moore's
tables we have inserted an abbreviated configuration notation. For
full spectroscopic notations the reader is referred to the
original laboratory line lists or to detailed atomic databases.
Intensities from the different STIS spectra are given in Cols. 7-10. Unidentified lines are marked with "unid" in the fourth
column.
In Table 3 we have sorted the identified lines from Table 2 according to element, starting with the lightest element, carbon, and ending with the heaviest, strontium. Within each species the lines have been grouped after the excitation potential of the upper level, from which the line originates. The velocity for each line has been included to facilitate the study of consistency within each group of lines for a specific species.
The spectral distribution of lines from a specific atom (ion) is determined by the atomic structure and the value of the ionization potential. Hence, the number of lines identified for different species reflects not only the abundance but also the complexity of the atomic structure. Assuming an upper limit of about 8 eV of the photon energy available for ionization and excitation (see Sect. 2) the number of observable emission lines from some spectra will be very small. We can divide the spectra of the observed species in three groups, corresponding to their atomic structure and referring to the periodic table:
Some single line identifications in Table 2 (and 3) are questionable either because the associated velocity differs remarkably from other lines or because the excitation energy is much higher than for other lines of the same species. However, the presence of the element is clear. As discussed above the presence of elements having a simple atomic structure is difficult to verify from the number of spectral lines. For example, aluminum is detected only by the inter-combination line of Al II and cannot be verified by other lines in the observed wavelength region, assuming similar excitation energies as for other elements. For comparison, we show in Fig. 5 the situation for two spectra, Ti II and Sr II, where all allowed transitions within the observed wavelength range are included. The Einstein A-value (times the statistical weight of the upper level) is given on the horizontal axis as a measure of the line strength and the excitation energy of the upper level of the transition on the vertical axis. Among all possible transitions (marked with grey dots) the observed lines are marked with black dots. An expected trend of decreasing level population with increasing excitation energy can be seen. In addition, we also clearly see the larger number of predicted lines for Ti II due to a more complex atomic structure (Ti II has three and Sr II one electron outside closed shells).
No lines from hydrogen or helium that can be associated with emission from the Sr filament have been detected. Neither have lines from nitrogen or oxygen. However, the spectrum includes the dust-scattered hydrogen Balmer P-Cygni stellar emission and could mask very weak nebular Balmer emission lines. The only neutron-capture element identified is strontium, but two of the unidentified lines, discussed in the next subsection, coincide in wavelength with Y II. However, they cannot be confirmed by other Y II lines having about the same probability to occur. Two of the unidentified lines coincide with the two strongest lines of the resonance multiplet of Zr II, a4F-z4G. Other than a coincidence with one other weak line, no other lines from Zr II are observed.
The line intensities from individual observations are included in Table 2. They are represented by the integrated flux in the emission feature, where contributions from obvious blending components have been subtracted. The tabulated flux is measured from intensity-calibrated spectra, which have not been corrected for interstellar reddening. Since the different observations do not cover the same spatial region the intensity ratios for different line pairs may not be the same in the different observations. In the wavelength regions affected by foreground absorption the intensity values are less reliable. Generally, the accuracy of the intensities is also affected by blending from other lines as well as from emission from the same line formed in other spatial regions along the line of sight. Some lines of e.g. [Fe II] and [Ni II] show complex profiles. The intensity contribution from the Sr filament is difficult to determine. In such cases we used multi-Gaussian fits to extract the fluxes.
![]() |
Figure 5: Lines from Ti II ( upper panel) and Sr II ( lower panel) in the region 3000-10 000 Å for Ti II and 3000-11 000 Å for Sr II. All possible lines are shown in grey and the lines observed in the spectrum are in black. The difference in atomic structure is obvious. Note the different x-scales. The forbidden lines of [Ti II] are not included. |
Open with DEXTER |
Table 4: Unidentified lines.
About 40 of the 600 observed lines in the spectra of the Sr filament remain unidentified. These are marked with unid in Table 2 and listed in Table 4. A dozen unidentified lines have substantial strengths, as indicated in the intensity column of Table 4. For some of the lines we include possible identifications, but they should only be regarded as wavelength coincidences between observed lines and predicted transitions. The reasons for not including them among the identified lines could be a large Doppler velocity, an anomalous excitation energy or a general inconsistency with observed lines from the same ion.Perhaps the most striking features of Table 4 are the wavelength coincidences of two Y II lines and of two Zr II lines and also the absence of candidates for identification of three of the strongest lines. The latter three lines appear below 2600 Å, which means that the corresponding photon energy is about 4.8 eV. This is remarkable, considering that 4.8 eV is not far from the highest excitation energy observed in the total spectrum and that all transitions between levels below 7-8 eV are known in ionized iron-group elements. The most probable explanation for these lines is that they originate from a neutral atom. However, as mentioned in Sect. 4.1, this region suffers from absorption which can cause a shift in the observed wavelength and a significantly decreased measured line intensity. Emission from other spatial regions can also affect the lines.
We note that the ejecta surrounding
Car have a very
non-uniform structure. While the overall Homunculus is a thin,
hollow shell about ten percent thickness compared to the distance
from the Central Source (Smith et al. 2003b; Smith 2002) the interior is likely a
hot, low-density stellar wind. The thin surface interior to the
shell is detected in [Fe II], [Ni II] emissions and Ca II
absorption (Davidson et al. 2001; Smith 2002). In line of sight, ejecta absorptions
of the iron-peak elements demonstrate a range of temperature and
electron density that correlate with velocity (Gull et al., ApJ submitted). Interior to the Homunculus is the Little Homunculus, a
miniature bilobed structure (Ishibashi et al. 2003), which is seen in
multiple emission lines of iron-peak elements and in the hydrogen
Balmer lines. Between the bi-lobes of the Homunculus and the
Little Homunculus is the skirt region, partially seen in emission
lines, and in absorption lines.
Close to
Car are several very intense emission knots, the
Weigelt Blobs, seen strongly in many Fe II, Ni II, and Cr II lines
(Zethson 2001). Highly-excited emission lines seen in the Weigelt
Blobs and in the Little Homunculus disappeared during the 1998.0
and 2003.5 minima, but then returned.
Low-excitation lines maintain constancy in flux throughout the 5.52-year period.
As the Sr filament emission lines are low-excitation only, this reinforces the
concept that the Sr filament receives
radiation with the harder photons filtered out. Based upon the
spatial distribution of the blue-shifted velocities, the
Sr filament is probably located in this equatorial skirt
region. At a projected distance of the order of ten light-days,
the Sr filament receives intense mid-UV, and longer
wavelength, radiation from the Central Source. Likely it is the
strong absorption by iron and other iron-peak elements in the
ionized regions and just beyond the ionized regions that shield
the Sr filament. We note that the ionization potential of Fe
is 7.9 eV and that of Sr is 5.7 eV. As there is abundant
Fe I and little Fe II in the Sr filament,
this indicates that the strontium is singly-ionized, but protected
from becoming doubly-ionized by an iron-shield. Moreover, many
Fe II absorptions are in the spectrum indicating the
abundance of singly-ionized iron in the vicinity of the
Sr filament. Shortward of 2500 Å, much of the ultraviolet
spectrum is chopped up, further protecting the neutral and
singly-ionized species with ionization potentials above 4 or 5 electron volts. Indeed the question arises as to whether molecular
species might reside in this region. Ground-based, near-IR
observations of the Homunculus (Smith 2002) do not
indicate molecular hydrogen at these velocities or spatial
position, but the ground-based observations were accomplished with
lower spatial resolution.
We have systematically obtained spectra of the Sr filament to characterize the spatial extent and the level of excitation through the identification of over 600 emission lines. We have also measured the fluxes of these lines in preparation for obtaining physical information of this neutral emission region. The first paper, based upon the Sr II emission line ratios, has been published, characterizing the temperature and density of the Sr filament (Bautista et al. 2002), other papers will follow discussing models of other iron-peak neutral and singly-ionized species. We hope to provide information on relative abundances of various ionic species, possibly elemental abundances, but modelling and possibly some laboratory work will first be necessary.
Acknowledgements
We are grateful to Kazunori Ishibashi for providing calibrated spectra and giving inputs in the initial analysis. Other members of the HST Eta Carinae Treasury Project Team are Manuel Bautista, Michael Corcoran, Augusto Damineli, Kris Davidson (P.I.), Fred Hamann, John Hillier, Roberta Humphreys, Jon Morse, Otmar Stahl, Nolan Walborn and Kerstin Weis. This study is part of a project funded through a contract (S.J.) with the Swedish National Space Board. The data were obtained through the following HST observational programs: 8036, 8327, 8483, 8619 and 9420. Funding was provided under the STIS GTO program and HST GO programs. We acknowledge the assistance on the analysis by the STIS Instrument Definition Team (IDT), especially Don Lindler, Terry Beck and Keith Feggans. H.H. is grateful for travel support from the STIS IDT for a visit to Goddard Space Flight Center. N.S. was supported by NASA through grant HF-01166.01A from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. This research has made use of NASA's Astrophysics Data System Bibliographic Services.