Table 3: Models for $\alpha $ Cen A and B. The upper part of the table gives the observational constraints used for the calibration. The middle part of the table presents the modeling parameters with their confidence limits, while the bottom part presents the global parameters of the two stars. The mean large and small spacings and their respective errors are calculated exactly as in Bouchy & Carrier (2002) and Carrier & Bourban (2003).
  Model M1 Model M2
  $\alpha $ Cen A $\alpha $ Cen B $\alpha $ Cen A $\alpha $ Cen B
$M/M_{\odot}$ 1.105 0.934 1.105 0.934
$L/L_{\odot}$ $1.522 \pm 0.030$ $0.503 \pm 0.020$ $1.522 \pm 0.030$ $0.503 \pm 0.020$
$T_{{\rm eff}}$ [K] $5810 \pm 50$ $5260 \pm 50$ $5810 \pm 50$ $5260 \pm 50$
$R/R_{\odot}$ $1.224 \pm 0.003$ $0.863 \pm 0.005$ $1.224 \pm {0.006}$ $0.863 \pm {0.010}$
[Fe/H $]_{{\rm s}}$ $0.22 \pm 0.05$ $0.24 \pm 0.05$ $0.22 \pm 0.05$ $0.24 \pm 0.05$
$\Delta \nu_{0}$ [$\mu $Hz] $105.5 \pm 0.1$ $161.1 \pm 0.1$ $105.5 \pm 0.1$ $161.1 \pm 0.1$
$\delta \nu_{02}$ [$\mu $Hz] $5.6 \pm 0.7$ $8.7 \pm 0.8$ $5.6 \pm 0.7$ $8.7 \pm 0.8$
t [Gyr] $6.50 \pm 0.20$ $6.52 \pm 0.30$
$\alpha $ $1.83 \pm 0.10$ $1.99 \pm 0.10$ $1.83 \pm 0.10$ $1.97 \pm 0.10$
$Y_{{\rm i}}$ $0.275 \pm 0.010$ $0.275 \pm 0.010$
$(Z/X)_{{\rm i}}$ $0.0435 \pm 0.0020$ $0.0434 \pm 0.0020$
$L/L_{\odot}$ 1.497 0.522 1.503 0.523
$T_{{\rm eff}}$ [K] 5769 5270 5769 5266
$R/R_{\odot}$ 1.227 0.868 1.229 0.870
$Y_{{\rm s}}$ 0.231 0.247 0.231 0.247
$(Z/X)_{{\rm s}}$ 0.0386 0.0402 0.0385 0.0402
[Fe/H $]_{{\rm s}}$ 0.22 0.24 0.22 0.24
$\Delta \nu_{0}$ [$\mu $Hz] $105.9 \pm 0.1$ $161.7 \pm 0.1$ $105.5 \pm 0.1$ $161.1 \pm 0.1$
$\delta \nu_{02}$ [$\mu $Hz] $4.6 \pm 0.6$ $10.3 \pm 0.9$ $4.6 \pm 0.6$ $10.2 \pm 0.8$


Source LaTeX | All tables | In the text