Table 8: Summary of the absolute abundances in the three DLA systems studied.
Quasar Q0100+13 Q1331+17 Q2231-00
$z_{\rm abs}$ 2.309 1.776 2.066
$\log N$(H I) 21.37 (0.08) 21.14 (0.08) 20.53 (0.08)
$\log N$(Zn II) [Zn/H] $_{\rm obs}$ 12.47(0.01) -1.57(0.09) 12.54(0.02) -1.27(0.09) 12.30(0.05) -0.90(0.10)
$\log N$(Fe II) [Fe/H] $_{\rm obs}$ 15.09(0.01) -1.78(0.08) 14.63(0.03) -2.01(0.09) 14.83(0.03) -1.20(0.09)
  [Fe/H] $_{\rm cor}$ (E00)   -1.63(0.10)   -1.23(0.12)   -0.83(0.14)
  [Fe/H] $_{\rm cor}$ (E11)   -1.63(0.10)   -1.15(0.13)   -0.83(0.14)
  [Fe/H] $_{\rm cor}$ (S00)   -1.52(0.10)   -0.95(0.13)   -0.69(0.14)
  [Fe/H] $_{\rm cor}$ (S11)   -1.52(0.10)   -0.95(0.13)   -0.69(0.14)
$\log N$(Cr II) [Cr/H] $_{\rm obs}$ 13.37(0.01) -1.69(0.08) 12.95(0.03) -1.88(0.09) 13.00(0.04) -1.22(0.09)
  [Cr/H] $_{\rm cor}$ (E00)   -1.61(0.09)   -1.23(0.13)   -0.94(0.13)
  [Cr/H] $_{\rm cor}$ (E11)   -1.60(0.10)   -1.14(0.15)   -0.94(0.13)
  [Cr/H] $_{\rm cor}$ (S00)   -1.53(0.10)   -1.07(0.12)   -0.80(0.13)
  [Cr/H] $_{\rm cor}$ (S11)   -1.51(0.10)   -0.94(0.13)   -0.82(0.13)
$\log N$(Ni II) [Ni/H] $_{\rm obs}$ 13.87(0.01)a -1.75(0.08)a 13.44(0.08) -1.95(0.11) 13.54(0.06) -1.24(0.10)
  [Ni/H] $_{\rm cor}$ (E00)   -1.62(0.10)   -1.23(0.15)   -0.91(0.14)
  [Ni/H] $_{\rm cor}$ (E11)   -1.60(0.10)   -1.09(0.17)   -0.87(0.15)
  [Ni/H] $_{\rm cor}$ (S00)   -1.52(0.10)   -0.95(0.14)   -0.78(0.14)
  [Ni/H] $_{\rm cor}$ (S11)   -1.50(0.10)   -0.88(0.15)   -0.73(0.14)
$\log N$(Mn II) [Mn/H] $_{\rm obs}$$^{\dag }$ ... ... 12.50(0.03) -2.17(0.09) 12.59(0.04) -1.47(0.09)
$\log N$(Si II) [Si/H] $_{\rm obs}$ >14.72a >-2.21a 15.30(0.01) -1.40(0.08) 15.29(0.04) -0.80(0.09)
  [Si/H] $_{\rm cor}$ (E00)   >-2.21   -1.22(0.11)   -0.78(0.10)
  [Si/H] $_{\rm cor}$ (E11)   >-2.21   -1.16(0.12)   -0.78(0.10)
  [Si/H] $_{\rm cor}$ (S00)   >-2.21   -0.98(0.11)   -0.74(0.11)
  [Si/H] $_{\rm cor}$ (S11)   >-2.21   -1.01(0.11)   -0.74(0.10)
$\log N$(S II) [S/H] $_{\rm obs}$ 15.09(0.06) -1.48(0.11) 15.08(0.11) -1.26(0.14) 15.10(0.15) -0.63(0.17)
$\log N$(Mg II) [Mg/H] $_{\rm obs}$ 15.57(0.09) -1.38(0.11) 15.53(0.14) -1.19(0.15) ... ...
  [Mg/H] $_{\rm cor}$ (E00)   -1.38(0.11)   -1.05(0.16)   ...
  [Mg/H] $_{\rm cor}$ (E11)   -1.38(0.11)   -0.90(0.19)   ...
  [Mg/H] $_{\rm cor}$ (S00)   -1.37(0.11)   -0.87(0.17)   ...
  [Mg/H] $_{\rm cor}$ (S11)   -1.37(0.11)   -0.76(0.18)   ...
$\log N$(Ti II) [Ti/H] $_{\rm obs}$* <12.21b <-2.10b <11.34 <-2.74 12.66(0.08) -0.81(0.11)
$\log N$(Ar I) [Ar/H] $_{\rm obs}$ 14.21(0.12) -1.68(0.15) ... ... ... ...
$\log N$(N I) [N/H] $_{\rm obs}$ 15.03(0.10) -2.31(0.14) <15.23 <-1.88 <15.02 <-1.48
$\log N$(P II) [P/H] $_{\rm obs}$ 13.05(0.09) -1.85(0.13) 13.25(0.10) -1.42(0.13) <13.51 <-0.55
$\log N$(Al II) [Al/H] $_{\rm obs}$ ... ... >13.74a >-1.89a ... ...
$\log N$(Cl I) [Cl/H] $_{\rm obs}$ ... ... 13.05(0.10) >-1.37c ... ...
a Prochaska & Wolfe (1999).
b Prochaska et al. (2001).
c The [Cl/H] absolute abundance derived from the Cl I column density has to be considered as a strict lower limit, since the dominant state of Cl should be Cl II in DLAs.
$^{\dag }$ We do not compute the dust corrections for [Mn/H], since this element when analyzed is compared with Fe, and these two elements have very similar dust depletions.
* We do not compute the dust corrections for [Ti/H], since this element when analyzed is compared with Fe, and in this case dust depletion and nucleosynthesis tend to work in the opposite sense (see Paper I).
In the dust correction models E00 and E11, Vladilo (2002a) assumes that the intrinsic [Zn/Fe] ratio is equal to +0.10 dex.
In the dust correction models S00 and S11, Vladilo (2002a) assumes that the intrinsic [Zn/Fe] ratio is equal to +0.00 dex.

Source LaTeX | All tables | In the text