Table 1: of results with magnetic diffusivity $\eta $ independent of z(i.e., $\eta _1=1$), $R_\alpha =-1.85$, $R_\omega =185$, Ru=0.64, $\alpha _{\rm SS}=0.01$, ${\cal P}=1$, and $\lambda =0.43$. $E_{\rm t}$ and $E_{\rm d}$ are the field energies in the whole computational domain and near the disc respectively (see text), s=EP/ETis the ratio of energies in the poloidal and toroidal magnetic field in the whole domain, and F0 is the signed flux through the disc plane in $r\le 1$. The final entry (asterisked) has $R_\alpha =0$, and refers to a purely advective calculation, with no dynamo action.
$B_{\rm ext}$ $E_{\rm t}\times10^{-4}$ $E_{\rm d}\times10^{-4}$ $s\times10^6$ $\phantom{0}F_0$
0.0 5.1 4.8 $\phantom{0}\phantom{0}2.9$ $\phantom{0}0.40$
0.01 5.1 4.8 $\phantom{0}\phantom{0}3.3$ $\phantom{0}0.41$
0.03 5.3 4.9 $\phantom{0}\phantom{0}4.6$ $\phantom{0}0.50$
0.10 6.0 5.5 $\phantom{0}\phantom{0}1.7$ $\phantom{0}0.83$
1.0 $34\phantom{0}\phantom{0}$ $25\phantom{0}\phantom{0}$ $230\phantom{0}$ $\phantom{0}5.37$
10.0 $2.8\times10^3$ $1.8\times10^3$ $280\phantom{0}$ 54.7
$*1.0\phantom{0}$ $28\phantom{0}\phantom{0}$ $18\phantom{0}\phantom{0}$ $280\phantom{0}$ $\phantom{0}5.47$


Source LaTeX | All tables | In the text