Table 1: Main properties of the tori considered in the numerical calculations. From left to right the columns report: the name of the model, the specific angular momentum $\ell $ (normalized to M), the polytropic constant $\kappa $, the inner and outer cusps of the torus, $r_{\rm ci}$ and $r_{\rm co}$, the radial position of the pressure maximum $r_{\rm max}$ (all radii are in units of the gravitational radius $r_{\rm g}$), the potential gaps $\Delta W_{\rm {i}}\equiv W_{\rm {in}}-W_{\rm {ci}}$ and $\Delta W_{\rm {o}}\equiv W_{\rm {in}}-W_{\rm {co}}$, where $W_{\rm {in}}$ is the potential at the inner edge of the disc. The last column reports the orbital period at the centre of the torus, $t_{\rm orb}$, expressed in milliseconds. All of the models share the same value of the cosmological parameter y=10-6, the same mass for the black hole, $M=10~M_{\odot}$, the same adiabatic index $\gamma =4/3$, and the same torus-to-hole mass ratio $M_{\rm t}/M=0.2$.
Model $\ell $ $\kappa $ (cgs) $r_{\rm ci}$ $r_{\rm co}$ $r_{\rm max}$ $\Delta W_{\rm i}$ $\Delta W_{\rm o}$ $t_{\rm orb}$ (ms)
A1 3.84 8.970 ${~\times~} 10^{14}$ 4.419 94.866 8.822 0.010 -0.010 8.11
A2 3.84 2.568 ${~\times~} 10^{15}$ 4.419 94.866 8.822 0.025 0.005 8.11
A3 3.84 4.372 ${~\times~} 10^{15}$ 4.419 94.866 8.822 0.032 0.012 8.11
B1 3.94 2.295 ${~\times~} 10^{15}$ 4.133 94.564 9.876 0.004 0.004 9.61
B2 3.94 3.775 ${~\times~} 10^{15}$ 4.133 94.564 9.876 0.010 0.010 9.61
B2 3.94 6.740 ${~\times~} 10^{15}$ 4.133 94.564 9.876 0.020 0.020 9.61
C1 4.00 3.025 ${~\times~} 10^{15}$ 4.000 94.373 10.489 -0.007 0.007 10.51
C2 4.00 7.120 ${~\times~} 10^{15}$ 4.000 94.373 10.489 0.007 0.021 10.51
C2 4.00 1.125 ${~\times~} 10^{16}$ 4.000 94.373 10.489 0.020 0.034 10.51


Source LaTeX | All tables | In the text