A&A 412, 121-132 (2003)
DOI: 10.1051/0004-6361:20031408
G. M. Muñoz Caro 1,2 - W. A. Schutte 1
1 - Raymond and Beverly Sackler Laboratory for Astrophysics, Leiden
Observatory, 2300 RA Leiden, The Netherlands
2 - Institut d'Astrophysique Spatiale, UMR 8617, Bât. 121, Campus Paris XI, 91405 Orsay, France
Received 14 November 2002 / Accepted 20 August 2003
Abstract
We simulate experimentally the physical conditions present in dense clouds by
means of a high vacuum experimental setup at low temperature T
12 K.
The accretion and photoprocessing of ices on grain surfaces is simulated in
the following way:
an ice layer with composition analogous to that of interstellar ices is
deposited
on a substrate window, while being irradiated by ultraviolet (UV) photons.
Subsequently the sample is slowly warmed up to room temperature;
a residue remains containing the most refractory products of photo- and
thermal processing.
In this paper we report on the Fourier transform-infrared (FT-IR) spectroscopy
of the refractory organic material formed under a wide variety of initial
conditions (ice composition, UV spectrum, UV dose and sample temperature).
The refractory products obtained in these experiments are
identified and the corresponding efficiencies of formation are given.
The first evidence for carboxylic acid salts as part of the refractory
products is shown.
The features in the IR spectrum of the refractory material are attributed
to hexamethylenetetramine (HMT, [(CH2)6N4]), ammonium salts of
carboxylic acids [(R-COO-)(NH+4)], amides [H2NC(=O)-R], esters [R-C(=O)-O-R'] and species related to polyoxymethylene
(POM, [(-CH2O-)n]).
Furthermore, evidence is presented for the formation of HMT at room
temperature, and the important role of H2O ice as a catalyst for the
formation of complex organic molecules.
These species might also be present in the interstellar medium (ISM) and form
part of comets. Ongoing and future cometary missions, such as Stardust and
Rosetta, will allow a comparison with the laboratory results, providing new
insight into the physico-chemical conditions present during the formation of
our solar system.
Key words: infrared: ISM - ISM: lines and bands - methods: laboratory - ultraviolet: ISM - ISM: dust, extinction
Dense molecular clouds in the ISM, with densities ranging from 103-106 atoms cm-3 and kinetic temperatures in the range 10-50 K, are the birthplaces of stars. Dust particles in dense clouds accrete molecules from the gas phase, getting coated with an ice mantle. The composition of the ice mantle depends on the local environment; it is dominated by H2O ice, while CO, CO2, CH3OH, and NH3 are commonly observed (Gibb et al. 2001).
Laboratory experiments simulating the energetic and thermal processing of interstellar (IS) ice analogs show the formation of new molecules, radicals, and other fragments. A small fraction of the new species is of high molecular mass, up to 200 amu, being refractory at room temperature. This material is generally called refractory organic residue or simply residue. Large organic compounds are produced either by ice photoprocessing (Agarwal et al. 1985; Briggs et al. 1992; Bernstein et al. 1995, 2002; Muñoz Caro et al. 2002, 2003) or by ion bombardment (e.g. Strazzulla & Baratta 1992; Kobayashi et al. 1995; Kaiser & Roessler 1998; Cottin et al. 2001).
These results indicate that IS ices could be the birthplaces of complex organic molecules. This possibly has important implications for the composition of the dust in the ISM and in the solar nebula. The delivery of such organic species to the surface of the early Earth by comets may have provided the basic ingredients required for the origin of life (Oró 1961; Greenberg 1986; Bernstein et al. 2002; Muñoz Caro et al. 2002). The composition of cometary organics can be also used as indicators of the physico-chemical conditions in the solar nebula.
This article reports on the experimental simulation of ice photoprocessing
in the ISM. The effects of irradiation and thermal processing of the ice
were monitored in situ by detailed FT-IR spectroscopy. Since
the main components of the residues, i.e., organic acid salts and
hexamethylenetetramine, have characteristic infrared features,
FT-IR spectroscopy is a sensible tool to get a global overview of the nature of
the organic photochemistry. For the first
time, detailed quantitative analysis was performed on the effects of essential
free parameters, such as ice composition, UV dose, photon energy, and
temperature. In particular, irradiation experiments were performed with varying
ice composition. In selecting the "standard'' ice composition for our
experiments, the observational constraints were taken into account. An ice
mixture
of molar composition H2O:CH3OH:NH3:CO:CO2 = 2:1:1:1:1 was selected
as standard. A H2O:CH3OH:CO2 = 2:1:1 ice resembles the abundances
found close to protostellar sources (Gerakines et al. 1999; Ehrenfreund et al. 1999; Dartois et al. 1999; Gibb et al. 2001). It should be noted that the
line of sight
abundances of CH3OH and CO2 is 5-10 times lower than the
abundances found close to the protostellar sources due to the dominance of H2O ice in the cold outer regions (Gerakines et al. 1999).
It was recently shown that, contrary to earlier views (Gibb et al. 2001;
Gürtler et al. 2002), most of the ammonia in IS ices is probably present in
the form of the ammonium ion, NH4+, rather than as NH3 (Taban et al. 2003; Schutte & Khanna 2003). In this paper, however, NH3 is used as a component of the starting ice mixture.
We postpone an investigation of the effects of the conversion
to NH4+ to future work.
Furthermore, the thermal evolution of the chemical
processes responsible for the main residue components was monitored. Our work
led to the identification of the most prominent feature of the residue, at 1586 cm-1. Evidence is shown for the catalytic properties of H2O ice in the formation of organic species.
The layout of this paper is as follows: in Sect. 2 we enumerate the scenarios where ice photoprocessing is expected to play a role. Section 3 describes the experimental protocol and the use of FT-IR spectroscopy. The experimental results are presented in Sect. 4 and discussed in Sect. 5. The astrophysical implications of the results are derived in Sect. 6.
Ice mantles in dense clouds are, to some extent, energetically processed by UV photons and cosmic ray particles. Observational evidence for photoprocessing
in dense clouds is derived from the reduction of the 3.4 m feature, which
can be explained by exposure of the grains to UV radiation (Muñoz Caro et al. 2001; Mennella et al. 2001).
Photoprocessing may occur due to penetration of UV into dense clouds
(Whittet et al. 1998). This effect may be enhanced if the cloud structure
is clumpy (Spaans & van Dishoeck 1997; Beuther et al. 2000). Recent
observations show dense clouds are very clumpy. For the molecular cloud
Cepheus B, the filling factor, the ratio of average over local densities, is = 2-4% (Beuther et al.
2000, 2002). Also the presence of neighbouring young massive stars can expose
the material within the cloud to intense UV fields, even above the average
interstellar field. The typical scale length of the UV penetration in such
clouds is 1 pc (Beuther et al. 2000).
Furthermore, photoprocessing may take place in
protostellar environments at various stages of the evolution.
In particular, UV photons scattered by dust in the bipolar outflow cavities
could
penetrate the outer regions of the circumstellar environments where ice mantles
are present (Spaans et al. 1995). Photolysis will also take place
in the outer regions of protoplanetary disks around young stellar objects
(YSOs, Aikawa & Herbst 1999). At the T Tauri phase of the protostellar
evolution the intensity of the UV field at 100 AU from the central source,
where disk temperatures are 60 K, can be up to
1012 UV photons cm-2 s-1 (Herbig & Goodrich 1986). With such a UV intensity
a molecule inside the ice mantle will absorb, for a typical UV cross section of
= 2
10-18 cm2, about 1 UV photon per week.
As will be reviewed below, such a dose would convert
10% of the carbon
in the ice to complex organic molecules. Beyond
100 AU, the magnetic field will couple to the gas causing turbulence
and vertical mixing of the material in the accretion disk. The mixing time is
of the order of 105 yr, shorter than the lifetime of the accretion disk,
about (3-10)
106 yr. This may cause most of the material in the
outer
disk to be exposed to the stellar photons and to become thoroughly photolyzed
(Aikawa et al. 1996, 1999, 2002).
At distances larger than 5-10 AU from a solar-type star, temperatures are low enough to preserve grains coated by ice mantles (Prinn 1993); here dust accretion would lead to comet formation, as it presumably occured in our own solar system. The large abundances of oxygen-rich complex organic molecules found in comet Halley (Kissel & Krueger 1987; Fomenkova et al. 1994) suggests that energetic processing in the ISM, and/or the solar nebula, cannot be disregarded.
A long standing question is the contribution of UV photons to energetic ice
processing in dense clouds as compared to cosmic rays.
Detailed calculations of the UV radiation field induced by cosmic rays in dense clouds lead to 5
103 UV photons cm-2 s-1 for 400 MeV protons. Therefore, in the case of H2O ice, the energy deposited in ice
mantles by UV photons is
14 times larger than for cosmic rays (Shen et al. 2003).
The experimental setup is made of stainless steel.
It basically consists of a high vacuum chamber where a gas mixture is deposited on a cold finger and irradiated. The system is pumped by a turbo pump (Pfeiffer Balzers TSH 280H)
backed up by a diaphragm pump (Vacuubran MD4T).
The pressure of the system at room temperature is P
1
10-7 torr.
The low temperatures typical of dense clouds, ranging from 10 to 50 K,
are achieved by means of a closed-cycle helium cryostat (Air Products Displex DE-202). At the cold
finger the temperature is T
K. For a detailed description of the
experimental setup, see Gerakines et al. (1995). The cold finger consists of
a sample holder, in which an IR-transparent CsI window is mounted,
using indium seals to ensure good thermal conductivity.
The gas mixture is prepared by filling a bulb with different gases while
the partial vapor pressures are monitored. The vacuum pressure of the gas line
is P
10-5 torr.
The gas mixtures prepared for our experiments contained, in various
proportions: H2O(liquid), distilled; CH3OH(liquid), Janssen Chimica 99.9%; NH3(gas), Praxair 99.999%; CO(gas), Praxair 99.997%; and CO2(gas), Praxair 99.996%. CO2 was kept in a separate
bulb in order to prevent it from reacting with the ammonia, NH3.
Deposition was done through two independent tubes (Gerakines et al. 1995).
During the deposition, the ice layer is simultaneously UV-irradiated
with a microwave stimulated hydrogen flow discharge
lamp (output
1.5
1015 photons s-1, Weber &
Greenberg 1985;
= 7.3-10.5 eV), separated from the vacuum
chamber by a MgF2 or a quartz window.
The resultant output spectra of the discharge lamp with the two interface
windows are shown in Fig. 1. The
top solid spectrum corresponds to the MgF2 transmission of the lamp
output, with main peak emission at Lyman-
,
121 nm line,
corresponding to 10.2 eV, for a hydrogen pressure
= 0.5 torr
(henceforth hard UV spectrum). The bottom solid spectrum corresponds to
the quartz transmission with a cutoff at about 140 nm (8.9 eV) giving an output
4
1014 photons s-1 (henceforth soft UV spectrum).
For comparison, the radiation field of the
diffuse interstellar medium (
5
107) is included (Jenniskens
1993, and ref. therein). There is a clear similarity between the radiation
field of the diffuse medium and the hard UV spectrum.
The extinction encountered upon entering a dense region will have the effect
of "softening'' the UV field, since more energetic photons face more
extinction than less energetic ones (e.g. Kim et al. 1994). To take this effect
into account, one irradiation experiment was performed with the soft UV spectrum.
![]() |
Figure 1:
Emission intensity spectrum, in arbitrary units, of the microwave
stimulated hydrogen flow discharge lamp for a MgF2 window
( top, solid line) and a quartz window ( bottom, solid line),
corresponding to the hard and soft UV spectrum, respectively.
Spectra were offset for clarity. For comparison, the radiation field of the
diffuse interstellar medium (![]() ![]() |
Open with DEXTER |
The typical rate of deposition was 2
1015 molecules cm-2 s-1,
and the deposition time was 13 hours, resulting in a final sample thickness
of
30
m, assuming a density of
= 1 g cm-3.
The UV photon flux at the position
of the sample is
5
1014 photon cm-2 s-1,
resulting in an average dose of
0.25 UV photon molec-1. A long
simultaneous deposition and irradiation are required to
photolyze ice samples of sufficient size to yield enough residue for
subsequent analysis.
After irradiation, the system is warmed up gradually
by means of a temperature controller (Scientific Instruments Inc. 9600-1) at 1 K min-1 until T = 40 K, in order to prevent explosive reactions caused
by UV-produced free radicals embedded in the ice (d'Hendecourt et al. 1982).
The cryostat is kept on during warm-up to prevent background H2O
from accreting on the substrate of the deposition.
Above 40 K the warm-up proceeds at about 4 K min-1 up to room
temperature; at that point the cryostat and temperature controller are turned
off, allowing the system to slowly get in thermal equilibrium with the environment.
The evolution of the sample during irradiation and warm-up was monitored by means of infrared transmission spectroscopy (BIO RAD FTS-40A spectrometer) at a resolution of 2 cm-1. For all the experiments, the final residue spectrum was taken after 10 h at room temperature. At that stage, the sample has stabilized (see Sect. 4.5). All the spectra shown here were scanned while the sample was under high vacuum.
In situ infrared analysis is a suitable technique for quantitative analysis, and the ease of this technique enables a thorough exploration of parameter space. Table 1 summarizes the parameters corresponding to the different experimental runs. Exp. OR1 constitutes the standard experiment which sets the starting-point for the exploration of parameter space. We investigate the effect of the UV dose (Exps. OR1, OR4, and OR5), UV photon energy (Exp. OR7 was performed with the soft UV spectrum, while all other experiments were performed with the hard UV spectrum), starting ice composition (Exp. OR1, OR9-OR13), ice deposition and irradiation at different temperatures (Exps. OR1 and OR6), as well as the concentration of organic ices relative to H2O ice (Exps. OR1 and OR16, OR11 and OR14, OR13 and OR15). Exp. OR8, with no irradiation, and Exp. OR10, without carbon components, served as blanks. Exp. OR2 aims to test the reproducibility of the standard, Exp. OR1. The time evolution at room temperature was monitored in Exp. OR3. The values in Table 1 correspond to the final residue spectrum after 10 h at room temperature (Sect. 3.2).
Table 1: Parameters of the experiments. Unless otherwise specified, the experiments were performed with deposition/irradiation at 12 K, and the hard UV spectrum.
For the standard experiment (OR1, Table 1), the H2O:NH3:CH3OH:CO:CO2 = 2:1:1:1:1 ice mixture was irradiated at 12 K with a UV dose of 0.25 photon molec-1 and the hard UV spectrum
(Fig. 1).
Figure 2 shows the resultant spectrum of the residue.
Table 2 summarizes the assignments of the
various infrared features.
![]() |
Figure 2: IR spectrum of the residue of the standard experiment, Exp. OR1. Feature identifications are given in Table 2. |
Open with DEXTER |
The fingerprints of HMT are also clearly present in
the residue spectrum, mainly through two sharp peaks at 1234 and 1007 cm-1, corresponding to the
and
CN stretch,
respectively (Bernstein et al. 1995).
A good overall fit of the standard (OR1) residue spectrum is obtained by
adding up the ammonium glycolate and HMT spectra at 240 K
(Fig. 3, lower dashed trace).
While these products sublimate in the 240-270 K range if deposited as pure
standards under vacuum conditions, matrix effects in the residue,
probably due to H-bonded species, prevent them from doing so, since
they can be observed at room temperature in the infrared spectrum. The match
shows that the overall composition of the residue observed in the mid-infrared
is dominated by HMT and carboxylic acid salts. It was earlier found that
if CH3OH is present in the starting ice mixture, HMT is the most abundant
component in the residue (Bernstein et al. 1995).
Gas chromatography-mass spectrometry (GC-MS), after derivatization, of
residues obtained from the photolysis of H2O:CO:NH3 = 5:5:1 ice
(Agarwal et al. 1985; Briggs et al. 1992) showed that carboxylic acids,
especially glycolic acid, are abundant components. Carboxylic acids
themselves have a low abundance in our experiments, since the strong peak due
to the C=O stretching mode at 1690-1710 cm-1 is absent
(Fig. 3). Dissociation of the carboxylic acid salts into the
acid and base components explains why the products analysed by GC-MS are
carboxylic acids, while the in situ infrared results presented here
indicate the presence of carboxylic acid salts.
It can be seen from Fig. 3 (bottom) that most of the features in the residue spectrum are reproduced using solely ammonium glycolate and HMT. Nevertheless, the peak intensities are not expected to be fit in this simple fashion, as other carboxylic acids are also present in residues (Agarwal et al. 1985; Briggs et al. 1992). The peak at 1085 cm-1 is characteristic of glycolic acid and it is also present in ammonium glycolate. By matching the intensity of this feature in the standard (OR1) residue spectrum, it can be seen that ammonium glycolate accounts for about 20% of the COO- stretching mode at 1586 cm-1. The remainder arises from a variety of other carboxylic acid salts, e.g. ammonium glycerate [(HOCH2CH(OH)COO-)(NH+4)] and ammonium oxamate [(NH2COCOO-)(NH+4)], for which the corresponding acids were found by chemical analysis (Agarwal et al. 1985; Briggs et al. 1992). The minor absorption features at 1742 and 1680 cm-1 are ascribed to the C=O stretching mode of esters [R-C(=O)-O-R'] and primary amides [R-C(=O)-NH2], respectively (Table 2). A weak band between 1620-1650 cm-1 (NH2 deformation of primary amides) becomes visible after the large 1586 cm-1 feature has decreased in intensity (Sect. 4.5, Fig. 11), confirming the presence of primary amides. This finding is consistent with the detection of amides as refractory products of ice photolysis by GC-MS (Agarwal et al. 1985; Briggs et al. 1992; Bernstein et al. 1995).
![]() |
Figure 3: IR spectrum of the residue of the standard experiment (OR1; solid line, bottom) compared to the reference spectra of possible products. The fit (dashed line) is obtained by addition of spectra 2 and 3 at 240 K, corresponding to ammonium glycolate and HMT. |
Open with DEXTER |
Table 1 summarizes the abundances of HMT, carboxylic acid (c.a.) salts, amides, esters and the estimated total as found in the residues for the
various experiments. The corresponding residue spectra are shown in Figs. 5-10.
The carbon column density of component i ,
,
in cm-2, was
obtained by integration of the corresponding spectral feature:
![]() |
(1) |
The production of HMT, carboxylic acid salts, amides, esters and the total is
given by the column densities of the carbon in those species, (HMT),
(c.a. salts),
(amide),
(ester) and
(total) relative to the total column density of carbon in the
original ice deposition,
(ice). While HMT contains 6 C atoms,
(HMT) = 6, the average number of C atoms assigned to carboxylic
acid salts and amides was
(c.a. salt) = 2.2 and
(amide) =
2.4, as derived from earlier results (Briggs et al. 1992). For esters, the
same value as for amides was assumed,
(ester) = 2.4. The results
of changing the various experimental parameters are discussed below.
The standard experiment (OR1) was repeated after 6 months to check the reproduceability of the results (OR2, Table 1). The same products were formed, although the abundances obtained for OR2 were 40% lower than for OR1. This could be due to some instability of the UV lamp. The other experiments were performed within the 3 months after OR1, so that the experimental errors should be lower than 40%.
Table 2: Assigned feature carriers of the IR residue spectrum of the standard, Exp. OR1.
Table 3: Band strengths of molecules used for integration.
The standard ice mixture was irradiated with different UV doses (Exps. OR1,
OR4, OR5 and OR7, Table 1). To allow a quantitative comparison, all
spectra were normalized to the total amount of carbon deposited in the ice,
(ice).
The spectra of the different irradiated ice mixtures at 12 K (showing only
the region where new species form) are shown in Fig. 4. The same
![]() |
Figure 4: Comparison of IR spectra of irradiated standard ice mixture at 12 K for the standard experiment (OR1, dose of 0.25 photon molec-1, hard UV spectrum), an experiment with a higher UV dose (OR4, dose of 3.33 photon molec-1, hard UV spectrum), and the only experiment performed with the soft UV spectrum (OR7, dose of 0.66 photon molec-1). For peak assignments see Schutte et al. (1999), Grim et al. (1989). |
Open with DEXTER |
![]() |
Figure 5: IR spectra of residues for the same starting ice composition and different irradiation dose, or different UV spectrum. |
Open with DEXTER |
For soft UV photons, Exp. OR7 (quartz window, Fig. 1), the
production of HMT, relative to other features, is enhanced as compared to
hard UV photons, Exps. OR1, OR4, and OR5
(MgF2 window, Fig. 1).
HMT is as efficiently produced by soft UV photons as it is by hard
UV photons.
![]() |
Figure 6: IR spectra of 12 K irradiated ice of standard (OR1) and H2O:NH3:CO = 2:1:1 experiment. |
Open with DEXTER |
Figure 6 shows the IR spectra of the irradiated ice mixture at 12 K corresponding to the standard (OR1) and the experiment using
H2O:NH3:CO = 2:1:1 ice (OR11).
The effects of excluding CH3OH and CO2 ice from the standard ice mixture
are shown in Fig. 7. When CH3OH is excluded, the sharp
![]() |
Figure 7: IR spectra of residues for different starting ice composition to study the effect of excluding CH3OH and CO2. Dashed lines indicate the position of the amides and HMT features. |
Open with DEXTER |
The effects of varying the relative abundance of NH3 were studied by Bernstein et al. (1995). No significant qualitative changes were found in the appearance of the infrared spectrum of the residues obtained from UV-irradiation of the H2O:CH3OH:CO:NH3 = 10:5:1:1 and H2O:CH3OH:CO:NH3 = 10:5:1:4.5 ice mixtures, although some small changes were observed. The total absence of NH3 leads, however, to an infrared spectrum with relatively few features. Therefore, it seems that the residue components depend strongly on the presence of NH3 (Bernstein et al. 1995).
The effect of the H2O abundance was investigated in
a number of experiments. The residue spectra are
shown in Fig. 8. Irradiation of NH3:CH3OH = 1:1 ice, OR9,
leads to the formation of a broad feature at 1098 cm-1, representative of the C-O stretch of aliphatic primary ethers
(RCH2-OCH2R). The exact position of this band corresponds to
polyoxymethylene (POM, [(-CH2O-)n]), but the major POM absorption at 932 cm-1 is not present, showing that the carrier is not POM in the pure
form. Instead, a strong band feature is found at 1006 cm-1, which is
![]() |
Figure 8: IR spectra of residues for different ice samples to study the effect of low concentration of organic molecules with respect to water and the result of excluding the CO and CO2 ices. |
Open with DEXTER |
Increasing the H2O abundance of the standard experiment (OR1) by a factor of 10 (OR16) leads to a high production of HMT and amides and significantly less carboxylic acid salts. Again, the conversion of carbon to residue is considerably enhanced, by almost a factor of 2, in the H2O-rich ice sample.
The standard experiment (OR1) was repeated with deposition and irradiation at 80 K (OR6), instead of the standard 12 K. At such temperatures CO does not
accrete onto the substrate.
The spectra are shown in Fig. 9. There is little difference
between the standard, OR1, and the 80 K experiment, OR6. The only relevant
effect is the lower production of carboxylic acid salts, possibly due to the
absence of CO in the ice.
![]() |
Figure 9: IR spectra of the residue of the standard experiment (OR1), with deposition and irradiation at 12 K, compared to the residue of the same ice mixture with deposition and irradiation at 80 K (OR6). |
Open with DEXTER |
The standard experiment (OR1) was performed without irradiation (OR8).
Possible contamination by organic molecules was checked by irradiating
H2O:NH3 = 2:1 ice, OR10. The resulting room temperature spectra are shown
in Fig. 10. In both cases, no residue is formed, with the exception
![]() |
Figure 10: Blank experiments to find the effect of irradiation and to constrain the influence of possible organic contaminants in the setup. |
Open with DEXTER |
To study the temperature of formation of the main residue components, HMT and carboxylic acid salts, the evolution of the infrared spectrum was monitored. The 1575 cm-1 feature of carboxylic acid salts is already present immediately as soon as room temperature is reached. Unfortunately, strong features of volatile ice components mask this band at lower temperatures, preventing the determination of the formation temperature. On the other hand, HMT did not seem to form immediately after room temperature is reached.
![]() |
Figure 11: Time evolution of the residue spectrum (OR3) at room temperature (T = 298 K). The dashed lines indicate the main features of NH4+ and HMT. |
Open with DEXTER |
In order to monitor the time evolution of the residue at room
temperature, an experiment was performed, Exp. OR3, where the last step of
the warm-up was slightly different. At 298 K the cryostat was switched off as
usual, but (unlike for the other experiments) the heater was kept on, set at 298 K, to guarantee that the residue was always monitored at this constant
temperature.
Figure 11 shows the time evolution of the residue, OR3, at room temperature. Immediately after room temperature is reached, no clear sign
of HMT is present in the spectrum: it is found that N(HMT) < 4.0
1016 molec cm-2, less than 1/8 of the amount of HMT observed at the end of the
experiment. The HMT features (1236 cm-1 and 1007 cm-1 features) gradually form over the next 10 h. Thus, HMT
only forms at the final high temperature stage of the experiment. Meanwhile,
the features of the carboxylic acid salts (3500-2300 cm-1, 1586 cm-1,
and 1463 cm-1) decrease.
The column density of HMT is plotted against time in Fig. 12,
together with the decrease of the ammonium cation, NH4+ (this is an essential component for the formation of HMT, see Sect. 5). After 10 h the formation of HMT stops and no change in the spectrum is observed upon
further monitoring for 4 days.
![]() |
Figure 12: Time evolution of the column densities of NH4+ and HMT (OR3) at room temperature (T = 298 K). |
Open with DEXTER |
Similar to carbon, see Sect. 4.3, an estimate of the column densities
of oxygen and nitrogen can also be obtained. The average number of O atoms for
the residue components are (c.a. salt)
3.2,
(amide)
1.0,
(ester)
1.4 (derived from
Briggs et al. 1992; no esters were detected in this work, so we assume
(ester)
(amide) + 1 as there are 2 O atoms in
the functional group of esters compared to one for amides) and
(HMT) = 0. For the standard residue, OR1, this gives
For irradiation of ice mixtures containing H2O, CO, and NH3 with a dose
of 0.25 photon molec-1, a conversion of 1-2% of the ice
(by mass) into organics was reported (Jenniskens et al. 1993). The values
obtained here for a similar dose and comparable ice mixtures
are similar (OR11, OR12, and OR14). Bernstein et al. (1995) report an ice-to-residue carbon conversion efficiency of 17.6% for H2O:CH3OH:CO:NH3 = 10:5:1:1 ice. Although no estimation of the UV dose
was given in their publication, the fact that they irradiated thin ice layers
for 10 h before the deposition of a new layer, indicates that they used a
considerably higher UV dose. This ice mixture was not reproduced in our
experiments. The
carbon conversion efficiency they report is 2 times larger than
the standard experiment, OR1, and comparable to OR16.
Bernstein et al. (1995) indicate that some HMT or closely related
material is produced during photolysis and warm-up to 40 K. Our
experiments found no spectroscopic
evidence for HMT below room temperature; instead our spectral data
clearly show that the formation of HMT takes place at room temperature at the expense of NH4+ (see Sect. 4.5). However, our results indicate that
the precursors of HMT can form at 12 K (Sect. 4.5 and sections below), as
was previously suggested (Bernstein et al. 1995).
Our in situ FT-IR spectroscopic results show that carboxylic acid salts are efficiently formed by photo- and thermal processing of interstellar ice analogs. As it will be discussed below, the presence of these salts is crucial for the formation of HMT.
Figure 13 shows the formation pathway of HMT as determined by studies
of HMT formation from H2CO and NH3 in aqueous solution (Smolin &
Rapoport 1959; Walker 1964). Bernstein et al. (1995) suggested this pathway of HMT formation could also be valid for ice irradiation experiments.
It is clear from the IR monitoring of the sample that HMT only forms at room temperature (Sect. 4.5, Figs. 11 and 12). Therefore,
the last step in the formation of HMT involving the reaction of 1,3,5-trihydroxymethylhexahydro-1,3,5-triazine with ammonia must occur at room
temperature. The former molecule, with mass 177 amu, was synthesized at 25C
by reaction of amine salts with aqueous H2CO under acidic conditions
(Narasimhan et al. 1985). Its
precursor, hexahydro-1,3,5-triazine, was detected in the residue by GC-MS
(Meierhenrich et al. 2003). No 1,3,5-trihydroxymethylhexahydro-1,3,5-triazine
was observed, probably because this molecule is readily converted into HMT.
While free NH3 has already sublimated at this
stage, the ammonia required for step 5 could be supplied by the reverse
acid-base reaction between the ammonium cation (NH4+) and the
carboxylic acid anion (XCOO-), Sect. 4.2.
This possibility is
born out by Fig. 12, showing that the amount of HMT produced is
nearly equal to the quantity of NH4+ that is lost at room temperature.
An important implication of this is that the presence of ammonium salts is
required for the production of HMT in our experiments.
At least for some salts of carboxylic acids with ammonia, such as
ammonium carbamate [(NH2-COO-)(NH+4)], the dissociation rate
is strongly temperature dependent (Ramachandran et al. 1998, and references
therein). It is therefore expected that the decomposition rate of the ammonium
salts described here would be different for temperatures higher than room
temperature, affecting the release of NH3, and consequently the rate of
formation of HMT.
While the final step in the formation of HMT occurs at high temperature,
the preceding four steps should take place at 12 K during the ice photolysis.
This is understood when considering that steps 2 and 4 each require 3 H2CO molecules, i.e.
(12 K)/
(HMT)
0.5 is
required for both steps. However, for the standard experiment, OR1, comparison
of the HMT abundance in the residue with the H2CO abundance detected
after photolysis at 12 K gives
(12 K)/
(HMT)
0.25. For
other experiments this ratio can be as low as 0.1. Clearly, the amount of H2CO detected in the photolyzed ice at 12 K is insufficient
to account for the quantity of HMT observed at room temperature. This indicates
that all steps involving H2CO in the formation pathway of HMT must already
take place at 12 K during photolysis, i.e. up to step 4.
It is likely that copious quantities of H2CO are produced at 12 K,
either by photodissociation of CH3OH (Gerakines et al. 1996) or, to a lesser extent, by addition of H atoms to CO (Hudson & Moore 1999;
Hiraoka et al. 2002). Generally, the H2CO formed, due to its
reactivity, will only be a transient, while only a relatively minor fraction
becomes stored in the ice. The rest will form more complex species, such as
the precursors of the residue components.
![]() |
Figure 13: Chemical pathway for the formation of HMT, after Smolin & Rapoport (1959), Walker (1964), Bernstein et al. (1995). |
Open with DEXTER |
The refractory products of ice photoprocessing are very different
from the products of thermal processing alone. Generally, UV processing can
overcome high activation barriers, leading to thermodynamically favored
products, while thermal processing can only overcome low activation barriers
leading to unstable species.
H2CO, in the presence of some NH3 can react at 40 K to form a variety of thermodynamically
Table 4: Diagnostics of conditions in molecular clouds or solar nebula from the composition of the residue (cf. Sect. 4; Table 1).
unstable species (Schutte et al. 1993). Similar molecules are also formed by photolysis of NH3:CH3OH(:H2O) = 2:1(:1) ice; these polymers seem to contain C-N bonds. However, in all other cases, the main products are HMT and carboxylic acid salts, very different from the molecules obtained by thermal processing alone.
The observed enhancement on the formation of refractory organic molecules
diluted in H2O ice deserves extra attention. The H and OH radicals produced
by photodissociation of H2O can be incorporated into some of the reaction
products (e.g., one of the oxygen atoms in the carboxyl group of glycolic and
glyceric acid originates from H2O; Briggs et al. 1992). Nevertheless, this
effect would not be able to account for the enhancement by a factor of 20 observed in the formation of organic refractory
components in H2O dominated ices
(OR15 vs. OR9 and OR13, Table 1). In the case of the standard, OR1,
a larger H2O ice abundance also increases the production of organics
by almost a factor of
2 (OR16 vs. OR1, Table 1). Recent
quantum chemical calculations show that the addition of H2CO to NH3,
leading to HOCH2NH2 or (HOCH2)2NH is significantly enhanced when
the process occurs within a H2O ice matrix, enabling such reactions at temperatures below 100 K (Woon 2001).
Therefore, our experimental results confirm the theoretical calculations on the
important role played by H2O ice as a catalyst in the formation of large
organic molecules at cryogenic temperatures.
Complex organic molecules are present in a large variety of environments in space. Carbonaceous chondrites contain carboxylic acids, amino acids,
aromatic hydrocarbons and alcohols with concentrations of a few hundred parts
per million of the C abundance. Glycolic acid, the most abundant carboxylic
acid produced in our experiments was found in the Murchison meteorite
(Cronin et al. 1988). The chemical analysis of IDPs, believed to be of cometary
origin, is technically more troublesome than that of meteorites, as the size
particles are very small, from 10-200 m (Stephan et al. 1994). They are
known to contain a large fraction of organic molecules, many of them still
unidentified. The presence of the IR feature assigned to the carbonyl
functional group (C=O) is evidence for O-containing organics
(Flynn et al. 2002).
Comets preserve the most pristine material in the solar system. These bodies
are formed by agglomeration of dust particles of interstellar and/or solar
nebula
origin in the outer parts of the solar nebula. Cometary dust is rich in
organics, as much as 50% by mass (Fomenkova 1999).
A large fraction of the cometary organics, about 50%, are oxygen-rich
(O/C
0.4); these compounds are consistent
with structures of alcohols, aldehydes, ketones, acids and amino acids, and
their salts, although the exact make-up of these molecules can not be
unambiguously identified (Fomenkova 1994, 1999).
The O/C ratio of the oxygen-rich fraction in comets is similar to the
residue of the standard experiment, OR1 (Sect. 4.6). Our experiments
suggest that such
cometary species may have been produced by photolysis of ices in the ISM or the solar nebula.
By comparing the abundance ratios of different classes of molecules in comets
to our experimental results, see Table 1, it is possible to
evaluate the parameters that played a role on the early evolution of cometary
ices, and therefore make a diagnostic of the conditions in the molecular cloud
or solar nebula environments.
Table 4 shows how the abundance ratios of different classes of molecules can be used as tracers of such conditions. In particular,
estimations can be made of the total UV exposure of the ices and the abundance
ratios of the ices before irradiation.
The most abundant species, like HMT and carboxylic acids, could be
searched for in the radio and mm spectral region, in environments where ice mantles evaporate, like hot cores, although the large partition function of
such large species may result in weak lines difficult to observe. Less abundant
residue species, like amino acids (Bernstein et al. 2002; Muñoz Caro et al.
2002), would be even more difficult to observe. Nevertheless, the excess
emission of the 6.0 m (
1670 cm-1)
feature towards embedded massive protostars in dense clouds was ascribed
to organic residues that were exposed to long-term solar ultraviolet radiation
on the EURECA satellite (Gibb & Whittet 2002; Greenberg et al. 1995).
However, this feature is not present in the samples reported here,
obtained from ice exposure with a dose of 0.25 photon molec-1,
which should be more characteristic of the dense medium. Instead, the
spectrum of our samples is
dominated by the XCOO- feature at 1586 cm-1, which was not detected in the ice spectra towards protostars (Keane et al. 2001). It would be quite
unexpected if the organic material produced in dense clouds would be
similar to the highly processed residues on board EURECA, which are thought to
be representative of organic solids in the diffuse ISM (Greenberg et al.
1995). Instead, organic material in the dense ISM should rather be analogous
to the residues reported here. The analysis of cometary organics may help to
resolve this issue.
The molecules reported in this paper would be very difficult
to observe by astronomical IR observations, since the broad features of the volatile ices (H2O, CH3OH, etc.) will hide those of minor organic
components.
The detection of POM-like species in comets is not direct evidence for thermal
processing without irradiation (Schutte et al. 1993),
since depending on the ice composition, such species may also be formed by
photoprocessing (Sect. 4.3.3). Detailed analysis of the nature of the
POM-like material created under various conditions in the laboratory (UV,
thermal) is required to interpret the origin of the POM-like species.
The detection of POM in the coma of Halley by means of mass spectrometry, with
mass differences between peaks of 15
1 amu (Huebner & Boice 1987), leaves room for a POM structure
including NH groups; it was argued, however, that the observed mass spectrum
could be due to a CHON molecule and not necessarily a polymer (Mitchell et al.
1992). The infrared feature of comet Borrelly ascribed to POM is far too noisy
to draw any conclusions (Soderblom et al. 2002).
Our experiments show that the organic composition of comets may be used as an indicator of the environmental conditions in which they formed, i.e., the original dense cloud or the solar nebula. Ongoing and future cometary missions (Stardust, Rosetta), together with experimental simulations, are therefore promising, as they may shed new light on the early history of our solar system and provide direct information on the ambient conditions in the solar nebula.
Acknowledgements
C. J. Shen kindly provided us with his results before publication. We thank G. Lodder, J. Lugtenburg, G. Marel, H. S. Overkleeft, E. Pantoja and A. van der Gen for discussions on the chemical aspects. We are most thankful to J. M. Greenberg, who died on 29 November 2001, for his encouragement and discussions. G.M.M.C. thanks the Max-Planck-Institut für Aeronomie at Katlenburg-Lindau for a fellowship, during which part of this work was performed. This paper profited from the useful comments made by an anonymous referee.