A&A 411, L457-L460 (2003)
DOI: 10.1051/0004-6361:20031437
J. Knödlseder1 - V. Lonjou1 - P. Jean1 - M. Allain1 - P. Mandrou1 - J.-P. Roques1 - G. K. Skinner1 - G. Vedrenne1 - P. von Ballmoos1 - G. Weidenspointner1,5 - P. Caraveo4 - B. Cordier3 - V. Schönfelder2 - B. J. Teegarden5
1 - Centre d'Étude Spatiale des Rayonnements, CNRS/UPS, BP 4346,
31028 Toulouse Cedex 4, France
2 -
Max-Planck-Institut für Extraterrestrische Physic, Postfach 1603,
85740 Garching, Germany
3 -
DSM/DAPNIA/SAp, CEA-Saclay, 91191 Gif-sur-Yvette, France
4 -
IASF, via Bassini 15, 20133 Milano, Italy
5 -
Laboratory for High Energy Astrophysics, NASA/Goddard Space Flight Center,
Greenbelt, MD 20771, USA
Received 21 July 2003 / Accepted 16 September 2003
Abstract
We provide first constraints on the morphology of the 511 keV line
emission from the galactic centre region on basis of data taken with
the spectrometer SPI on the INTEGRAL gamma-ray observatory.
The data suggest an azimuthally symmetric galactic bulge component with
FWHM of
with a
uncertainty range covering
.
The 511 keV line flux in the bulge component amounts to
ph cm-2 s-1.
No evidence for a galactic disk component has been found so far;
upper
flux limits in the range
ph cm-2 s-1 have been obtained that depend on the assumed disk morphology.
These limits correspond to lower limits on the bulge-to-disk ratio
of 0.3-0.6.
Key words: gamma rays: observations
Since the first detection (Johnson & Haymes 1973) and the subsequent identification (Leventhal et al. 1978) of the galactic 511 keV annihilation line, the origin of galactic positrons has become a lively topic of scientific debate. Among the proposed source candidates figure compact objects such as neutron stars or black holes (Lingenfelter & Ramaty 1983), stars, such as supernovae, novae, red giants and Wolf-Rayet stars, expelling radioactive nuclei produced by nucleosynthesis (Ramaty et al. 1979), cosmic-ray interactions with the interstellar medium (Kozlovsky et al. 1987), pulsars (Sturrock 1971), gamma-ray bursts (Lingenfelter & Hueter 1984) and stellar flares. Yet so far the source of the galactic positrons is still unknown.
The question of the morphology of the galactic 511 keV annihilation signal is intimately related to the question of the origin of galactic positrons. The celestial distributions should be tied to the source distribution, although positron diffusion within the Galaxy may to some extent blur this link. Although earlier measurements already provided first indications of the morphology of the emission (e.g. Share et al. 1990), it is only with the advent of the OSSE telescope onboard the Compton Gamma-Ray Observatory that a first crude skymap of the 511 keV intensity distribution became available (Cheng et al. 1997; Purcell et al. 1997; Milne et al. 2000, 2001). The OSSE observations suggest at least two emission components, one being a spheroidal bulge and the other being a galactic disk component. Indications of a third component situated above the galactic plane have resulted in various speculations about the underlying source (von Ballmoos et al. 2003), yet the morphology and intensity of this component is only poorly determined (e.g. Milne et al. 2001).
Modelling the bulge component by symmetric gaussians, the OSSE data
suggest FWHM values in the range
with no significant
offset from the galactic centre
(Purcell et al. 1997; Milne et al. 2000).
TGRS results are also consistent with no significant offset from the
centre (
)
but suggest a somewhat broader distribution
(Harris et al. 1998).
The estimated bulge-to-disk ratio (hereafter B/D ratio) is only
poorly constrained by the observations, and estimates vary from
0.2-3.3 depending upon whether the bulge component features a halo
(which leads to a large B/D ratio) or not.
The total flux has been constrained to
ph cm-2 s-1 (Milne et al. 2000).
Clearly, more observations are needed to better constrain the 511 keV emission morphology, and thus to shed light on the origin of galactic positrons. In this paper we report a step towards this direction by exploiting a first set of data recorded by the spectrometer SPI on ESA's INTEGRAL observatory. First results on the spectral shape of the 511 keV line obtained from the same set of data, indicating a slightly broadened line of 2.95+0.45-0.51 keV FWHM, have been reported elsewhere (Jean et al. 2003).
The data analysed in this work were accumulated during the first
year's Galactic Centre Deep Exposure (GCDE) and Galactic Plane Scan (GPS),
executed as part of INTEGRAL's guaranteed time observations
(see Winkler 2001).
We used data from 19 orbits from March 3rd to April 30th, 2003, amounting
to a total effective exposure time of 1667 ks.
The GCDE consists of rectangular pointing grids covering galactic longitudes
and latitudes
,
with reduced exposure up to
.
The GPS consists of pointings within the band
along the
galactic plane.
For details see Winkler (2001).
The present data are from 1199 pointings with an average exposure of 1400 s per pointing.
As a result of data sharing agreements, the results presented here are
limited to the galactic quadrant
but, in accordance
with those agreements, data from pointings in the entire GCDE region
have been taken into account in the analysis.
The resulting sky exposure is depicted in
Fig. 1, where black/white corresponds to regions of
maximum/minimum exposure, respectively.
A quite homogeneous exposure has been achieved over galactic
longitudes
,
with a small exposure dip near the galactic
centre.
The latitude dependence is approximated by a Gaussian centred on the
galactic plane, with FWHM of
.
![]() |
Figure 1: Relative exposure map of the galactic centre region. Black corresponds to regions of maximum exposure. |
Open with DEXTER |
Data preparation and modelling of the instrumental background is identical to that described in Jean et al. (2003). The SPI single detector event data have been gain corrected and binned into event spectra of 0.25 keV bin width for each detector and pointing, leading to a 3-dimensional data space. The background has been modelled in this data space by two components, accounting for the instrumental 511 keV line and the underlying continuum (see Eqs. (1) and (2) and Fig. 1 in Jean et al. 2003). The short-term variability (<3 days) of the background has been predicted using the rate of saturating events in the Ge detectors, while the long-term variability has been regarded as an unknown (see Sect. 4).
The expected number of counts in this data space,
,
where
"p'' indicates the pointing, "d'' the detector, and "e'' the energy bin,
is given by
![]() |
(1) |
A qualitative impression about the spatial distribution of the 511 keV
-ray line emission can be obtained by deconvolving the data into
a celestial intensity distribution.
For this purpose, we employed in this work the Richardson-Lucy algorithm
(Richardson 1972; Lucy 1974) that has
been successfully applied to
-ray data of earlier missions
(e.g. Knödlseder et al. 1999; Milne et al.
2000).
The Richardson-Lucy algorithm decomposes the sky into a grid of
equally sized pixels (here of
)
and solves
for the intensity
in each of the pixels simultaneously using an
iterative maximum likelihood scheme.
The pixels are constrained to positive intensities.
As all pixel-based deconvolution algorithms, the Richardson-Lucy scheme
leads to morphology artefacts in the case of reconstructing a diffuse
low significance signal since the number of free parameters (i.e. the
number of image pixels) greatly exceeds the information available in the
data. In order to reduce these artefacts, we added a smoothing step to the
iterative scheme that effectively combines adjacent pixels and thus
reduces the number of pixels in the reconstruction.
As smoothing kernel, a boxcar average of
has been
employed.
Figure 2 shows the resulting skymap for negative
longitudes (according to the above cited data right agreements we
deliberately limit the image to
).
As insets, longitude and latitude profiles of the 511 keV line emission
are shown that have been obtained by integrating the intensity of latitudes
deg and longitude
,
respectively.
The emission is concentrated in an azimuthally symmetric region
near the galactic centre, with an extent of about
(FWHM).
The emission maximum is slightly offset from the galactic centre, and
is situated at about
and
.
Integrating the intensity over the feature suggests a flux of the
order of 10-3 ph cm-2 s-1.
![]() |
Figure 2:
511 keV gamma-ray line intensity map of the galactic centre region
(only negative longitudes). Black corresponds to regions of maximum
511 keV line intensity. Longitude and latitude profiles, integrated
over
![]() ![]() |
Open with DEXTER |
To asses the significance of the morphology that is seen
in the skymap, we performed Monte-Carlo simulations of the
deconvolution process assuming that the 511 keV line emission
morphology is described by an azimuthally symmetric Gaussian bulge of
FWHM centred at
and
.
In the ideal case the image deconvolution should reproduce the input
image of an azimuthally symmetric emission centred at the galactic
centre, yet the limited statistics may introduce some uncertainties in
the reconstruction procedure.
Figure 3 shows the resulting simulated skymap, now
shown for the entire galactic centre region.
Obviously, although the underlying model has been azimuthally
symmetric, the deconvolved image shows a clear emission asymmetry,
with FWHM of
and
in the longitudinal and latitudinal
directions, respectively.
Also the emission maximum is displaced from the galactic centre, and
is found at
and
.
These values are comparable to those found for the centroid of the
emission in the 511 keV sky map, and as we will show more quantitatively
in the next section, the apparent displacement in the 511 keV sky map
could indeed be of purely statistical nature.
![]() |
Figure 3:
Simulated 511 keV gamma-ray line intensity map based on an
azimuthally symmetric Gaussian model of 10
![]() ![]() ![]() |
Open with DEXTER |
A more quantitative approach is possible by fitting to the data a model of the spatial distribution that has one or more components. The components can be point sources, Gaussian or other geometric forms, or arbitrary maps corresponding to known distributions. The intensities of the components are adjusted to maximise the likelihood that the model gives rise to the observed distribution of counts in the line (a 5 keV wide energy band centred at 511 keV was used), binned by detector and by pointing. Along with the model intensities, 19 background model scaling factors have been adjusted for the line component by the fit, one for each orbit (factors G in Jean et al. 2003); the scaling factors for the continuum component (factors F in Jean et al. 2003) have been fixed to unity. Not fitting the background model introduces systematic uncertainties in the analysis that considerable biases the morphology determination.
Guided by the imaging analysis (and by previous work performed to
describe the morphology of the OSSE observations,
e.g. Purcell et al. 1997) we used Gaussian functions to
describe the observed bulge emission.
Assuming an azimuthally symmetric Gaussian centred on
and
results in an optimum FWHM of
9+7-3 degrees, where
the quoted uncertainties are formal statistical
errors.
Systematic uncertainties, due to different treatment of the
instrumental background, hardly affect the lower boundary, while
adding an additional uncertainty of
to the upper boundary.
The flux in the bulge component amounts to
ph cm-2 s-1, where the uncertainty
includes (and is dominated by) the uncertainty in the Gaussian width.
Formally, the statistical detection significance of the 511 keV line
amounts to
.
Relaxing the condition on spherical symmetry does not significantly
improve the fit.
Yet relaxing the condition on the location of the bulge centroid
improves the likelihood by 3.3 corresponding to a significance of
for the displacement.
The optimum centroid positions has been determined as to be
and
,
the optimum Gaussian width at this location amounts to
8+4-3 degrees (
statistical errors).
Systematic uncertainties in the centroid determination amount to
about
.
The flux in the displaced bulge component amounts to
ph cm-2 s-1, including again the
uncertainty in the Gaussian width.
Including a galactic disk component in addition to the Gaussian bulge
component does not significantly improve the fit.
In none of the considered cases did the fit attribute a significant flux
to the disk component.
From the fits we derive upper limits on the disk flux by multiplying
the statistical uncertainty in the disk component by the
requested significance level (we quote here
upper limits,
hence the formal
statistical errors have been multiplied by
a factor of 2).
Although the disk models we tested formally cover the entire galactic
plane, the effective exposure of our data is restricted to
,
and hence we can only derive conclusions about this longitude range.
For the bulge component we used an azimuthally symmetric Gaussian
centred on
and
with the width being a free
parameter of the fit.
In all considered cases, the best fitting FWHM amounted to
,
with a
lower limit of
.
The resulting limits on the disk flux strongly depend on the spatial
distribution that has been assumed for the disk component.
Using models of constant positron annihilation surface density
throughout the galactic disk, limited to a maximum galactocentric
radius of 14 kpc, provide the largest upper flux limits, comprised
between
ph cm-2 s-1 for assumed exponential scale heights
of 90 and 325 pc, respectively.
A tracer of the old stellar population, such as the DIRBE 35
m allsky
map, gives a slightly smaller limit of
ph cm-2 s-1, while a
massive star tracer, such as the DIRBE 240
m allsky map, provides a
considerably smaller limit of
ph cm-2 s-1.
The 511 keV line emission detected by SPI from the Galaxy is so far
adequately described by a Gaussian shaped bulge of
FWHM.
The
lower limit on the bulge size amounts to
,
which
is at the upper limit of the values suggested by the OSSE observations
(
).
At this early stage of the analysis we do not emphasise
this discrepancy, yet it may be taken as a first hint of morphology
differences between the OSSE and SPI analyses.
The data do not suggest that the bulge geometry deviates from spherical
symmetry yet a small offset of the centroid from the galactic centre direction
is indicated by the data at the
confidence limit.
The present data do not yet allow to make a statement about the
reality of the positive latitude enhancement that has been reported by
Purcell et al. (1997).
Assuming that the bulge is indeed located at the galactic centre, at
a distance of 8.5 kpc, the measured 511 keV line flux converts into
an annihilation rate of
s-1.
The observed flux is compatible with previous measurements that have
been obtained using telescopes with small or moderate fields-of-view,
yet it is on the low side when compared to OSSE measurements.
OSSE, however, has detected an additional galactic disk component
that is (so far?) not seen in the SPI data.
The disk flux determined by OSSE lies in the range
ph cm-2 s-1, and strongly depends on the assumed shape
of the bulge component.
Our
upper limits on the disk component of
ph cm-2 s-1
are still compatible with the OSSE measurements.
The upper flux limits on the galactic disk component may be converted
into lower limits for the bulge-to-disk ratio.
While the constant surface density models provide the smallest limits
of
,
the DIRBE 35
m and 240
m maps lead to
and
,
respectively.
We included in these limits the
uncertainty about the bulge
size which translates into a typical uncertainty of 0.2 in the
bulge-to-disk ratio.
Again, these limits are compatible with the OSSE measurement of values
in the 0.2-3.3 range.
The analysis of SPI data that have been recorded during the first half
of the first year's INTEGRAL GCDE have provided initial constraints on
the morphology of the galactic 511 keV line emission.
The data suggest that the emission follows an azimuthally symmetric galactic
bulge of
typical FWHM, yet the uncertainties on the width
are still rather large (
,
).
The bulge seems centred on the galactic centre, yet a marginal
displacement towards positive latitudes and negative longitudes may be
indicated.
Obviously, this displacement clearly needs confirmation by the
analysis of a much larger set of data.
The available SPI observations are so far rather insensitive to a galactic disk component, and only upper limits have been derived. More data along the galactic plane are needed to better constrain the disk component. These data are, to some extent, already taken, yet the data sharing agreements do not allow for their inclusion in the present analysis. Yet we are optimistic that once combined, the complete set of SPI observation will provide unprecedented constraints on the morphology of the 511 keV line emission, and thus give us key information about the origin of the positrons in the Galaxy.
Acknowledgements
The SPI project has been completed under the responsibility and leadership of CNES. We are grateful to ASI, CEA, CNES, DLR, ESA, INTA, NASA and OSTC for support.