Table 7: The first 89 fine-structure n=2, 3 and 4 levels included in the EIE calculation by Chen et al. 2003: comparison of calculated and observed energies in Rydbergs for Fe  XVII; "obs'' data are observed values from NIST; the entries " SS'' ( SS$\sp -$/ SS$\sp +$: without/with inclusion of 2-body magnetic components) and the entries " MCDF'' are from SUPERSTRUCTURE and GRASP calculations respectively.

i
SLJ (jj) J obs SS$\sp -$ ss$\sp +$ MCDF BPRM

1
2s22p$^{6\ ^1}$S0 (0,0)0 0.0 0.0 0.0 0.0 0.0
2 2s22p53s 3P $_2^{\rm o}$ (3/2,1/2)$^{\rm o}$2 53.2965 53.3622 53.3666 53.1684 53.3821
3 3s 1P $_1^{\rm o}$ (3/2,1/2)$^{\rm o}$1 53.43 53.5044 53.5091 53.3100 53.5211
4 3s 3P $_0^{\rm o}$ (1/2,1/2)$^{\rm o}$0 54.2268 54.2865 54.2865 54.0957 54.3190
5 3s 3P $_1^{\rm o}$ (1/2,1/2)$^{\rm o}$1 54.3139 54.3791 54.3697 54.1851 54.4074
6 3p 3S1 (3/2,1/2)1 55.5217 55.5686 55.5735 55.3963 55.6001
7 3p 3D2 (3/2,1/2)2 55.7787 55.8397 55.8455 55.6606 55.8654
8 3p 3D3 (3/2,3/2)3 55.8974 55.9463 55.9494 55.7791 55.9857
9 3p 1P1 (3/2,3/2)1 55.9804 56.0338 56.0404 55.8654 56.7674
10 3p 3P2 (3/2,3/2)2 56.1137 56.1597 56.1642 55.9950 56.2007
11 3p 3P0 (3/2,3/2)0 56.5155 56.5821 56.5809 56.4050 56.2221
12 3p 3D1 (1/2,1/2)1 56.6672 56.7288 56.7211 56.5495 56.0669
13 3p 3P1 (1/2,3/2)1 56.9060 56.9499 56.9420 56.7855 57.0024
14 3p 1D2 (1/2,3/2)2 56.9336 56.9817 56.9703 56.8135 57.0339
15 3p 1S0 (1/2,1/2)0 57.8894 58.0639 58.0619 57.9308 58.0358
16 3d 3P $_0^{\rm o}$ (3/2,3/2)$^{\rm o}$0 58.8982 58.9407 58.9578 58.7738 59.0057
17 3d 3P $_1^{\rm o}$ (3/2,3/2)$^{\rm o}$1 58.981 59.0188 59.0289 58.8454 59.0846
18 3d 3P $_2^{\rm o}$ (3/2,5/2)$^{\rm o}$2 59.0976 59.1651 59.1659 58.9826 59.2305
19 3d 3F $_4^{\rm o}$ (3/2,5/2)$^{\rm o}$4 59.1041 59.1821 59.1799 58.9901 59.2435
20 3d 3F $_3^{\rm o}$ (3/2,3/2)$^{\rm o}$3 59.1611 59.2240 59.2347 59.0498 59.2820
21 3d 1D $_2^{\rm o}$ (3/2,3/2)$^{\rm o}$2 59.2875 59.3513 59.3630 59.1797 59.4106
22 3d 3D $_3^{\rm o}$ (3/2,5/2)$^{\rm o}$3 59.3665 59.4471 59.4466 59.2598 59.5054
23 3d 3D $_1^{\rm o}$ (3/2,5/2)$^{\rm o}$1 59.708 59.7865 59.7907 59.6082 59.8446
24 3d 3F $_2^{\rm o}$ (1/2,3/2)$^{\rm o}$2 60.0876 60.1438 60.1431 59.9749 60.2171
25 3d 3D $_2^{\rm o}$ (1/2,5/2)$^{\rm o}$2 60.1617 60.2179 60.2045 60.0344 60.2940
26 3d 1F $_3^{\rm o}$ (1/2,5/2)$^{\rm o}$3 60.197 60.2627 60.2484 60.0754 60.3337
27 3d 1P $_1^{\rm o}$ (1/2,3/2)$^{\rm o}$1 60.6903 60.8225 60.8212 60.6279 60.8461
28 2s2p63s 3S1 (1/2,1/2)1   63.3306 63.3306 63.2125 63.3658
29 3s 1S0 (1/2,1/2)0   63.7925 63.7925 63.6986 63.8049
30 3p 3P $_0^{\rm o}$ (1/2,1/2)$^{\rm o}$0   65.7338 65.7377 65.6346 65.7726
31 3p 3P $_1^{\rm o}$ (1/2,1/2)$^{\rm o}$1 65.601 65.7687 65.7703 65.6676 65.8047
32 3p 3P $_2^{\rm o}$ (1/2,3/2)$^{\rm o}$2   65.9299 65.9285 65.8380 65.9792
33 3p 1P $_1^{\rm o}$ (1/2,3/2)$^{\rm o}$1 65.923 66.0723 66.0718 65.9782 66.1267
34 3d 3D1 (1/2,3/2)1   69.0162 69.0269 68.9221 69.0744
35 3d 3D2 (1/2,3/2)2   69.0351 69.0386 68.9323 69.0920
36 3d 3D3 (1/2,5/2)3   69.0672 69.0606 68.9518 69.1237
37 3d 1D2 (1/2,5/2)2 69.282 69.4358 69.4352 69.3247 69.4813
38 2s22p54s 3P $_2^{\rm o}$     71.8710 71.8754 71.6517  
39 2s22p54s 1P $_2^{\rm o}$   71.860 71.9150 71.9197 71.6983  
               
55 3P $_2^{\rm o}$     74.0927 74.1062 73.9033  
56 2s22p54d 3F $_3^{\rm o}$ (3/2,3/2)$^{\rm o}$3   74.1082 74.1151 73.8994  
57 1D $_2^{\rm o}$     74.1526 74.1595 73.9456  
               
85 2s2p64d 1D2 (1/2,5/2)2   84.0504 84.0501 83.9258  
86 4f 3F $_2^{\rm o}$ (1/2,5/2)$^{\rm o}$2   84.4770 84.4789 84.3462  
87 4f 3F $_3^{\rm o}$ (1/2,5/2)$^{\rm o}$3   84.4793 84.4801 84.3481  
88 4f 3F $_4^{\rm o}$ (1/2,7/2)$^{\rm o}$4   84.4853 84.4839 84.3522  
89 4f 1F $_3^{\rm o}$ (1/2,7/2)$^{\rm o}$3   84.4957 84.4953 84.3621  
$\infty$ 2s22p5 2P $_{3/2}^{\rm o}~\infty~l$   92.760   --   92.8398
SS calculations with statistical model scaling factors $\lambda_{nl}$ = 1.3835 1.1506 1.0837 1.0564 1.0175 1.0390 1.0511 1.0177 1.0191 1.0755
in 1s 2s 2p...4f order.

Source LaTeX | All tables | In the text