Table 2b: Calculated Fe  XVII fine structure levels, table not extended to symmetries other than $J\pi =0^{\rm e}$. This symmetry has Nlv = 20 levels below $\nu =11$ for the core ground state series: 3 Rydberg series ($\nu $ measured from the respective series limits, E from the core ground state 2P3/2, the first limit).
I LevelJ E/Ry $\nu\quad \ SL\pi$

Nlv = 20,        J pi = 0 e

1
2s22p6   0 -9.28398E+1  1S$^{\rm e}$
2 2s22p5(2P $^{\rm o}_{3/2}$)3p 0 -3.62221E+12.825 3P$^{\rm e}$
3 2s22p5(2P $^{\rm o}_{1/2}$)3p 0 -3.48040E+12.844 1S$^{\rm e}$
4 2s2p6(2S1/2)3s 0 -2.90350E+12.731 1S$^{\rm e}$
5 2s22p5(2P $^{\rm o}_{3/2}$)4p 0 -1.95296E+13.847 3P$^{\rm e}$
6 2s22p5(2P $^{\rm o}_{1/2}$)4p 0 -1.87056E+13.836 1S$^{\rm e}$
7 2s22p5(2P $^{\rm o}_{3/2}$)5p 0 -1.22822E+14.850 3P$^{\rm e}$
8 2s22p5(2P $^{\rm o}_{1/2}$)5p 0 -1.14454E+14.830 1S$^{\rm e}$
9 2s2p6(2S1/2)4s 0 -1.10221E+13.734 1S$^{\rm e}$
10 2s22p5(2P $^{\rm o}_{3/2}$)6p 0 -8.44845E+05.849 3P$^{\rm e}$
11 2s22p5(2P $^{\rm o}_{1/2}$)6p 0 -7.57469E+05.828 1S$^{\rm e}$
12 2s22p5(2P $^{\rm o}_{3/2}$)7p 0 -6.15891E+06.850 3P$^{\rm e}$
13 2s22p5(2P $^{\rm o}_{1/2}$)7p 0 -5.26390E+06.828 1S$^{\rm e}$
14 2s22p5(2P $^{\rm o}_{3/1}$)8p 0 -4.68712E+07.852 3P$^{\rm e}$
15 2s22p5(2P $^{\rm o}_{1/2}$)8p 0 -3.78258E+07.827 1S$^{\rm e}$
16 2s22p5(2P $^{\rm o}_{3/2}$)9p 0 -3.68406E+08.857 3P$^{\rm e}$
17 2s2p6(2S1/2)5s 0 -3.19987E+04.733 1S$^{\rm e}$
18 2s22p5(2P $^{\rm o}_{3/2}$)10p 0 -2.97673E+09.853 3P$^{\rm e}$
19 2s22p5(2P $^{\rm o}_{1/2}$)9p 0 -2.76993E+08.829 1S$^{\rm e}$
20 2s22p5(2P $^{\rm o}_{3/2}$)11p 0 -2.45262E+010.855 3P$^{\rm e}$


Source LaTeX | All tables | In the text