...1997[*]
The focus of (Sikivie et al. 1997) was on indentifying velocity streams from non spherically-symmetric angular momentum distributions. Although the same geometry as used here was employed, a (FG84, Bertschinger 1985)-type one particle integration was used which assumes strict self-similar phase mixing and so is insensitive to phase space instability.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... SSIM[*]
The approach from the force equation in (Sikivie et al. 1997) yields a slightly different self-similar constraint for the angular momentum:

\begin{displaymath}j^{2}_{\rm Sikivie}=\frac{J^{2}_{\rm Sikivie}S^{4}_{\rm T}a^{...
...}_{\rm T}GMa}{\xi _{\rm a}^{2}}=\frac{j^{2}}{\xi _{\rm a}^{2}},\end{displaymath}

where \( \xi _{\rm a}(x)=\left. \xi \right\vert _{t=0} \) is obtained with the combination of Eqs. (10), (13) and S=x/a and we identify our conventions with \( J^{2}_{\rm Sikivie}S_{\rm T}^{4}\equiv J^{2}. \)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... [*]
The NFW profile in terms of critical density, density and radial scales reads

\begin{displaymath}\frac{\rho }{\rho_{\rm c}}=\frac{\delta _{\rm c}}{\frac{r}{r_{\rm s}}\left( 1+\frac{r}{r_{\rm s}}\right) ^{2}},\end{displaymath}

with \( r_{\rm s}=r_{200}/c \) defining the concentration factor and the two scales correlated through (see (NFW))

\begin{displaymath}\delta _{\rm c}=\frac{c^{3}}{\left[ \ln (1+c)-\frac{c}{1+c}\right] }\cdot\end{displaymath}

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... off[*]
An example calculation: the constant mass of one shell is given in the simulation's unit as \( m_{1\rm shell}=2\times10^{-2}. \) The maximum density contrast in Fig. 2 can be taken as \( \frac{\delta \rho }{\rho _{0}}=4\times10^{13}. \) Because of its high value, the density contrast, denoted \( \delta \) in this note, can be identified with the density itself

\begin{displaymath}\frac{\delta \rho }{\rho _{0}}=4\times10^{13}\gg 1\Leftrightarrow \frac{\delta \rho }{\rho _{0}}\equiv \delta \simeq \rho .\end{displaymath}

Thus, the volume of innermost shells can be evaluated as

\begin{displaymath}\delta \simeq \rho =\frac{m_{1\rm shell}}{V_{1\rm shell}}\Rightarrow V_{1\rm shell}\simeq \frac{m_{1\rm shell}}{\delta },\end{displaymath}

so the characteristic length scale of a shell in the centre is given by

\begin{eqnarray*}L_{1\rm shell}&\simeq& ^{3}\sqrt{\frac{m_{1\rm shell}}{\delta }...
...mes10^{-16}}=^{3}\sqrt{0.5}\times10^{-5}\simeq 7.9\times 10^{-6}.\end{eqnarray*}


.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...Chen & Jing 2002)[*]
After we completed this work, the results from Hiotelis (2002) have come to our attention, that are similar to ours in the case of a same value for $\lambda$.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Copyright ESO 2003