... following[*]
In a inhomogeneous system, similarly way to what happens in a homogeneous system, ${\vec f}$ depends on ${\vec v}$, ${\vec F}$ and $ \theta$ (the angle between ${\vec v}$ and ${\vec F}$) while unlike homogeneous systems, ${\vec f}$ is a function of the inhomogeneity parameter p. The dependence of ${\vec f}$ on p is not only due to the functions A(p), B(p) and to the density parameter $ \alpha$ but also to the parameter $ \beta=\vert\vec F\vert/{\vec Q}_{\it H}$. In fact in inhomogeneous systems the normal field  ${\vec Q}_{\it H}$ is given by ${\vec Q}_{\it H}=GM(\alpha B(p)/2)^{2/(3-p)}$, clearly dependent on p.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... =0.15[*]
This is the value I used, remember however that the distribution is scale-free.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Copyright ESO 2003