Table 2: Results for a polytropic model (polytropic exponent $\Gamma =2$, polytropic constant K) with $\bar{\mu}_{\rm c}=1$, $r_{\rm p}/r_{\rm e}=0.834$. Here, $\bar{\mu}_{\rm c}=K\mu_{\rm c}$, $\bar{\Omega}=K^{1/2}\Omega$, $\bar{M}=K^{-1/2}M $, $\bar{R}_{\rm circ}=K^{-1/2}{R}_{\rm circ}$ and $\bar{J}=K^{-1}J$ are normalized values of the physical quantities, see Eqs. (56, 57). For the meaning of the quantities listed in the Cols. 3-11, see Table 1.
  m=6 m=8 m=10 m=12 m=14 m=16 m=18 m=20 m=22
$\bar{\mu}_{\rm c}$ 1                  
$r_{\rm p}/r_{\rm e}$ 0.834                  
$\bar{\Omega}$ 0.4004385709 1.1e-03 9.0e-05 7.3e-06 6.4e-07 6.4e-08 7.2e-09 8.6e-10 1.1e-10 1.3e-11
$\bar{M}$ 0.1605611357 4.2e-04 5.7e-06 2.5e-06 3.2e-07 3.7e-08 4.1e-09 4.7e-10 5.4e-11 5.9e-12
$\bar{R}_{\rm circ}$ 0.6794279802 5.7e-04 6.0e-05 5.4e-06 5.1e-07 5.2e-08 5.9e-09 7.0e-10 8.6e-11 9.8e-12
$\protect\bar{J}$ 0.009491087857 9.4e-04 3.3e-05 8.5e-06 1.1e-06 1.2e-07 1.3e-08 1.4e-09 1.4e-10 1.2e-11
$Z_{\rm p}$ 0.4580590747 1.7e-03 8.7e-05 4.6e-06 2.6e-07 1.9e-08 1.8e-09 2.0e-10 2.6e-11 3.1e-12
GRV2   2.6e-04 8.1e-06 4.8e-07 7.5e-08 1.3e-08 1.8e-09 2.4e-10 3.2e-11 4.3e-12
GRV3   5.5e-05 2.9e-06 2.7e-07 1.5e-08 1.2e-09 2.0e-10 3.9e-11 7.1e-12 1.3e-12
$\vert 1-M_{\rm in}/M_{\rm out}\vert$   1.2e-04 6.5e-06 5.5e-07 5.5e-08 5.5e-09 5.3e-10 4.5e-11 2.4e-12 3.3e-13
$\vert 1-J_{\rm in}/J_{\rm out}\vert$   2.7e-04 3.7e-05 4.0e-06 4.2e-07 4.1e-08 3.6e-09 2.5e-10 5.6e-13 4.9e-12


Source LaTeX | All tables | In the text