A&A 403, 573-584 (2003)
DOI: 10.1051/0004-6361:20030403
S. Lopez1 - S. L. Ellison2,3
1 - Departamento de Astronomía, Universidad de Chile, Casilla 36-D,
Santiago, Chile
2 -
European Southern Observatory, Casilla 19001, Santiago 19,
Chile
3 -
Pontificia Universidad Católica de Chile,
Casilla 306, Santiago 22, Chile
Received 8 August 2002 / Accepted 17 March 2003
Abstract
Following our previous work on metal abundances of a double
damped Ly
system with a line-of-sight separation
2000 km s-1 (Ellison & Lopez 2001), we present VLT UVES abundances of 3 new
systems spanning a total of
6000 km s-1 at
toward the
southern QSO CTQ247. These abundances are supplemented with echelle
observations of another "double'' damped Ly
system in the
literature. We propose a definition in terms of velocity shift of the
sub-class "multiple damped Ly
system'', which is motivated by its possible
connection with large-scale structure.
We find that the abundance ratio [S/Fe] is systematically
low in multiple systems compared with single systems, and
with a small scatter. The same behavior is found in 2 more single DLA
systems taken from the literature that show evidence of belonging to a
galaxy group. Although [Si/Fe] ratios are also generally lower in
multiple DLAs than in single DLAs, the effect is less striking since the
scatter is larger and there are a number of low [Si/Fe] DLAs in the
literature. We suggest that this can be explained with a combination
of detection bias and, to a lesser extent, the scatter in ionization
corrections for different absorbers. We investigate whether
consistently low
/Fe ratios could be due to dust depletion or
ionization corrections and find that the former effect would emphasize
the observed trend of low
/Fe in multiple systems even
further. Ionization may have a minor effect in some cases, but at a
level that would not change our conclusions. We thus conclude that
the low
/Fe ratios in multiple DLAs have a nucleosynthetic origin and
suggest that they could be explained by reduced star formation in
multiple damped Ly
systems, possibly due to environmental effects.
There seems to be independent evidence for this scenario from the mild
odd-even effect and from the relatively high N/
ratios we
observe in these multiple systems.
Key words: quasars: general - quasars: absorption lines - quasars: individual: CTQ247 - galaxies: evolution - galaxies: clusters: general
Table 1: VLT observations of CTQ 247.
Damped Lyman Alpha systems (DLAs) in the spectra of high-redshift quasars have promised to be a powerful probe of early metal enrichment in young galaxies. However, despite the considerable effort invested to develop this technique, its full potential has yet to be realized. Although extensive observing campaigns at intermediate resolution have swollen the list of known DLAs (Ellison et al. 2001b; Lopez et al. 2001 and Peroux et al. 2001 are some of the most recent DLA surveys), only a fraction have been followed-up at high resolution to study their chemical properties, investigate dust content, photoionization and metallicity evolution. With the present sample of some 60 abundance measurements some broad trends have been identified (e.g., Prochaska & Wolfe 2002), but the global picture of star formation (SF) history deduced from these patterns of elemental abundances - likely affected by dust depletion patterns (Hou et al. 2001) - is still unclear. In particular, extracting coherent scenarios of SF histories in individual DLAs, or subsets of absorbers remains a challenging prospect with current data.
One of the great advantages of studying high redshift galaxies in absorption is the lack of selection bias associated with cosmological dimming: galaxies are selected based only on gas cross section, irrespective of their intrinsic luminosity. However, this feature may turn out to be a double-edged sword in that extracting coherent chemical enrichment patterns is almost certainly hindered by the mixed morphological representation. Undoubtedly, some of the scatter in relative abundances comes from variable dust depletion, although system-to-system differences persist even after correcting for grain fraction (Vladilo 2002). In order to compare elemental trends in DLAs in a similar manner to, for example, local stellar abundance studies, a significant refinement in our approach is required. Such a refinement might include isolating particular subsets of DLAs based either on their morphology or some other observed property (e.g. spin temperature; Chengalur & Kanekar 2000).
In this paper, we investigate whether a distinct enrichment trend exists for absorption line systems with close companions in velocity space, which we will refer to as "Multiple Damped Lyman Alpha systems'', or MDLAs.
Lopez et al. (2001) identified the existence of three damped Ly
absorbers
spanning a total of v= 5900 km s-1 at
toward the
southern quasar CTQ 247, the first ever example of a triple DLA; Ellison
et al. (2001b) discovered a double absorption systems for which
v= 1800 km s-1 at
toward Q2314-409; a similar velocity span as in CTQ 247 is
covered by the two DLAs toward Q2359-02 at
(Wolfe et al. 1986). Statistically, these are extremely improbable events
if the proximity of the systems is purely by chance, and only these
few cases are reported in the literature.
It is therefore feasible
to postulate that in these cases the multiple absorption systems
may be in some way related, rather than chance alignments.
However, such large velocities are difficult to reconcile with today's galaxy
groups and clusters - i.e., virialized entities -
or even with superclusters.
However, at z>0 current work on small angular fields shows evidence for
very large structures on
comoving scales as large as
Mpc
(
km s-1 if purely due to Hubble flow) at various redshifts.
Evidence for large structure on many Mpc scales
has been found in absorbing gas both
across (e.g., Williger et al. 2002;
Mpc at
)
and along the line of sight
(Quashnock et al. 1996;
Mpc at
), in
super-clusters (
Mpc at
;
Haines et al. 2003) and
in Lyman-break galaxies (Steidel et al. 1998;
Mpc
at
). Large structure has also been reproduced
in CDM N-body simulations (
Mpc at
;
Evrard et al. 2002). It therefore seems a feasible
(but not exclusive) possibility that absorption systems separated by
several thousand km s-1 may be associated with very large scale structure.
Motivated both by the uniqueness of MDLAs and the possibility of
large-structure, we
have embarked on a program to measure abundances in these
systems. We will
define an MDLA as 2 or more DLAs spanning a velocity range
![]() |
(1) |
From an instrumental point of view, identifying MDLAs in Ly
- in contrast to using metal lines - will certainly limit the
identification of systems separated by
km s-1.
If the discovery spectrum has poor S/N, obtaining line parameters
for close MDLAs will require
both the detection of metal lines, and a good continuum
estimation
.
For N(H I) criterion, we will relax the canonical limit to include systems with N(H I ) >1020 cm-2. Not only do systems down to this limit continue to exhibit clear damping wings, but in the following we show that in such range ionization does not yet play a significant role when deriving abundances from low-ions.
The first in-depth study of an MDLA was presented by Ellison & Lopez (2001; hereafter Paper I). There, the two DLAs toward Q2314-409 were noted to have low [S/Fe] ratios, a result which we suggested was due to the possible impact of environment on the chemical abundances in DLA protogalaxies. In the present work, we extend the study of abundances in MDLAs by investigating the triple DLA toward CTQ247 with new echelle data, and including literature abundances of the double system toward Q2359-02. These new abundances reinforce our previous suggestion of peculiar relative abundances in MDLAs.
After presenting the new data in Sect. 3, the discussion of the abundances is given in Sect. 4, where we attempt a statistical comparison between the 2 populations, and assess possible systematic effects that may bias our result. A discussion on the nature of MDLAs is outlined in Sect. 5.
CTQ 247 was observed in service mode with the UVES instrument at the ESO
Kueyen telescope in October and November 2001 under good seeing
conditions (
). With the 390+580 and 437+860
dichroic modes we covered from 328 to 1020 nm with two gaps at 576-583
nm and 852-866 nm. The exposure times were 13 500 s for
dichroic 1 and 10 800 s for dichroic 2 (Table 1).
After the usual fashion of bias-subtracting and flat-fielding of the
individual CCD frames, the echelle orders were extracted and reduced
interactively with the UVES pipeline routines (Ballester et al. 2000). The reference
Th-Ar spectra used for wavelength calibration were taken after each
science exposure. The wavelength values were converted to
vacuum heliocentric values and each order of a given instrumental
configuration was binned onto a common linear wavelength scale of 0.04 Å pixel-1. The reduced orders were then added with a
weight according to the inverse of the flux variances. Finally, the
flux values were normalized by a continuum that was defined using
cubic splines over featureless spectral regions. The spectral
resolution is
km s-1, while the typical signal-to-noise ratio
per pixel is
.
In addition to the UVES data, a lower resolution (
Å)
spectrum of CTQ 247 was obtained on December 18 2000 using FORS2 at the
ESO Kueyen Telescope. This spectrum was used to better define the
quasar continuum in the spectral region around the damped Ly
lines.
We used FITLYMAN and VPFIT to fit the line profiles with theoretical
Voigt profiles. All fits were unconstrained in redshift, Doppler
width and column density, unless otherwise stated. In general, we
prefer this approach over the apparent optical depth method
(AODM; Savage & Sembach 1991) when velocity components are not
resolved as is sometimes the case. In addition, when dealing with
transitions that lie in the Ly
forest, such as the S II
triplet, fitting provides important information to the extent of
possible blending.
Despite this, however, we did use the AODM
for transitions where the fit failed due to line blending of many components
or poor S/N.
We adopted the up-to-date f-values listed
in Prochaska et al. (2001) and the
solar abundances by Grevesse & Sauval (1998), with updates for O and
N by Holweger (2001). Table 2
lists the column densities and derived abundances of all elements
covered by our observations.
The
H I column density was determined by fitting 3 components to the
damped Ly
and Ly
profiles in the FORS2 spectrum. The choice of
the low resolution spectrum reduces the uncertainties inherent to
determining N(H I) from echelle data, such as badly defined
continuum where the damping wings extend over more than one order.
We obtained N(H I
)=1021.13,
1021.09, and
1020.47 cm-2, for the 3 systems centered at
,
2.5950 and 2.6215. The theoretical profiles are
superposed on the data in Fig. 1. The internal fit errors
were 0.02 dex for all 3 H I measurements but we believe a more
realistic error is given by
0.1, which is shown by the dotted
curve in the figure. Although the noisy data around Ly
constrains H I only marginally, this error seems quite
safe, given the higher S/N at Ly
.
![]() |
Figure 1:
Normalized flux and ![]() ![]() ![]() ![]() ![]() |
Open with DEXTER |
We next give a short description of the metal line fits in each of the 3 DLAs which we henceforth refer to as CTQ 247A, B and C.
![]() |
Figure 2:
UVES spectrum
showing nonsaturated transitions in
CTQ247A (
![]() |
Open with DEXTER |
![]() |
Figure 3:
Same as in Fig. 2 but for
CTQ247B (
![]() |
Open with DEXTER |
![]() |
Figure 4:
UVES spectrum showing nonsaturated transitions in
CTQ247C (
![]() |
Open with DEXTER |
In Paper I we focused on the relative
to Fe peak abundances
in order to establish whether MDLAs may exhibit distinct SF histories.
Similarly, in Fig. 5 the solid circles depict [
/Fe]
vs. [Fe/H] for the 3 MDLAs presented in this paper (CTQ247A, B, and C), the double DLA Q2314-409A, B (Paper I), and Q2359-02 A, B
(Prochaska & Wolfe 1999).
The stars are DLAs taken from the literature. Due to the potential
problem of blending between S lines and the Ly
forest, we have compiled only
values obtained from echelle data. In cases where
numbers are present in several references, we have preferred the
values by Prochaska et al. (2001) for consistency.
In the following we show statistically that the sub-class MDLA is drawn from a different distribution to single DLAs. We then discuss to which extent dust and ionization effects might produce such a distinction, and what possible systematic effects may be present in the 2 samples.
Table 2:
Abundance measurements (and 3
upper limits)
for CTQ247. a uses AODM; b
.
![]() |
Figure 5:
Relative
ratios of ![]() ![]() ![]() ![]() |
Open with DEXTER |
![]() |
Figure 6: [S/Si] vs. [S/Fe] in MDLAs (circles), single DLAs (stars), and in the DLA toward Q0000-262 (triangle). |
Open with DEXTER |
Table 3: Abundance ratios: aProchaska et al. (2001); bProchaska & Wolfe (1999); cLu et al. (1998); dLu et al. (1996); eDessauges-Zavadsky et al. (2001); fLopez et al. (1999); gLopez et al. (2002); hBonifacio et al. (2001); iLevshakov et al. (2002); jGe et al. (2001); kPettini et al. (2002); lProchaska et al. (2001); mCenturion et al. (2000); nProchaska & Wolfe (1996); oDessauges-Zavadsky et al. (in prep.); pThis paper; qPaper I.
As expected in DLAs, all points in Fig. 5 fall over the
mark, as both S and Si are
-chain
elements which are created mainly in massive stars on much shorter
scales than the long-lived iron producing stars. The ratio
of [
/Fe] is usually interpreted as an indicator of star
formation history and the rate at which the different elements
are released into the ISM.
In addition to the MDLAs in Fig. 5, we have also plotted
DLAs with other neighboring galaxies (usually detected via Lyman break
imaging) in the field. These systems are Q0201+112 (Ellison et al. 2001a)
which has 4 identified galaxies in the vicinity, and Q0000-262
(Molaro et al. 2001) for which Steidel et al. (1996) found 2
Lyman break galaxies within
of the absorber.
The remarkable property to note in Fig. 5 is that all MDLAs
systematically show low [S/Fe] values with a small scatter (<0.2 dex). To
quantify this impression, we have performed a modified KS test that
provides the likelihood of MDLAs with [S/Fe] measurements to be
drawn from a different distribution to single DLAs. We created 1000
realizations of a simulation which recreates the [S/Fe] distribution
of literature DLAs and MDLAs including the 1
quoted errors. For
each DLA, an error was drawn at random from a Gaussian distribution
and added to the observed value
. A KS test was then run on each
of the 1000 datasets and the likelihood that the KS probability
was greater than a certain confidence level was calculated
from the number of realizations. In this fashion, we overcome 2
problems associated with a normal KS statistics: the small number of
MDLAs we have at our disposal and the exclusion of measurement errors.
According to our simulations, the likelihood p that the two samples are
drawn from different distributions is p=1.00 for
% (i.e.
every one of the 1000 realizations gives a
%),
p=1.00 for
%, and
even as high as 0.97 for
%. This indicates that
the consistently
low [S/Fe] values in MDLAs and other multiple systems are
statistically significant. Since Si and S are both produced in
oxygen burning reactions,
in all observed Galactic disk
stars (Chen et al. 2002) and we may expect to see similar patterns between S and Si in DLAs. However, the MDLA [Si/Fe] values have a slightly
larger dispersion and there are a number of low literature [Si/Fe]
values, which renders the two populations less distinguishable. This
may be explained because low
lines are easily
contaminated in the Ly
forest, whereas low
can be much more easily measured.
If we consider only
the literature DLAs with Si and S measurements, the KS probability
that the two [Si/Fe] samples are consistent is 11%, as opposed to 32% if all are included. There is an
obvious outlier in the [Si/Fe] distribution associated with system Q2359-02A; in the following section we argue that this system has
anomalously large dust content compared with the rest of the MDLAs and
literature DLAs. Discounting this exceptionally dust depleted
system reduces the KS probability even further of all [Si/Fe]
measurements to 9%. Therefore, although there is a hint that [Si/Fe]
may be low in MDLAs, the evidence is not as convincing as that for S.
We explore this further in the following section.
Before discussing the implications of the observed low [/Fe]
ratios in terms of a nucleosynthetic origin, we must first rule out
other (non-intrinsic) systematics. In Paper I, we have already
discussed the issue of dust and photoionization in the double DLA
toward Q2314-409. Here, we embark upon a similar assessment for the
CTQ247 triplet. In particular, we investigate whether systematics may
cause (a) the
/Fe ratio to be lower in MDLAs than in single
DLAs; and (b) the
under-abundance in MDLAs to be more evident
in S rather than Si.
First, we consider dust depletion. Although disentangling dust
depletion from pure nucleosynthesic effects in DLAs is still matter of
debate, some broad trends can be established: (1) in no instance is S
known to be depleted in the Galactic ISM (e.g. Savage & Sembach
1996). Conversely, Si is mildly depleted in most environments and Fe
is very easily incorporated into dust. Therefore, dust depletion will
cause an increase in both [S/Fe] and [Si/Fe], the effect being most
pronounced in the former ratio, so
.
(2) Zn is undepleted;
thus, assuming the same nucleosynthetic origin as Fe, one expects
in dusty systems.
Both in CTQ247A and B the
[Zn/Fe] shows a significant departure from solar, indicating that dust
is present. This is also true for Q2314-409, the other
MDLA for which a Zn abundance is determined; in all cases
0.3, typical of other DLAs. Therefore, any downward correction due to
dust would further emphasize the low
/Fe in these MDLAs. It
is noteworthy that Q2359-02A, which has the largest [Si/Fe] of all,
also shows an unusually large dust content, [Zn/Fe] = +0.88, explaining
its anomalously large [Si/Fe]. Not only is Q2359-02A relatively
highly depleted compared to other MDLAs, but also in comparison with
other DLAs which mostly have
.
Can low dust content in MDLAs compared with single DLAs be
responsible for lower [S,Si/Fe] in the former? Figure 6
shows [S/Si] vs. [S/Fe] for the (few) systems where both elements are
available, including 3 MDLAs. It can be seen that apart from one DLA with
an extremely large [S/Fe], there is no strong trend
for systems with lower [S/Si] (supposedly less dusty) to show lower
[S/Fe], suggesting that low S/Fe ratios are not strongly effected by dust.
Indeed, the large S abundance measured in Q0307-49 might be due to
Ly
blending (Bonifacio et al. 2001) and must be considered with
caution. Therefore, low S/Fe is not obviously correlated with low dust
content, at least not to the accuracy we can presently measure this
ratio. In conclusion, it does not seem from the present sample that a
general trend of low
/Fe values be driven by any effect of
dust, nor do MDLAs have atypical dust content.
We now turn to ionization. Given the large
N(H I)
of CTQ247A
and B, it is highly unlikely that ionization corrections are required
(Viegas 1995). Nonetheless, Prochaska et al. (2002c) found
significant corrections in a DLA with
,
so
there are occasional cases where photoionization plays a part even in
relatively large column density systems. In order to constrain the
ionization parameter for CTQ247A and B we use CLOUDY (Ferland 1993)
models with a
,
a Haardt-Madau ionizing
spectrum (Haardt & Madau 1996) at z=2.3 and a metallicity of 10-1.5 solar,
and use the observed ratios to constrain the ionization parameter.
For CTQ247A,
provides
the most stringent limit on
,
whereas the ratio of Fe III/Fe II provides most information on the ionization
of CTQ247B. In both cases, the limiting ionization parameter is found
to be
,
see upper panel of Fig. 7.
Consequently, this limits the correction to [S/Fe] to be less than
0.07 dex. Note that a correction of this extent is in agreement
with the subsolar [S/Si] observed for the 2 MDLAs in
Fig. 6 and brings this ratio into line with solar,
within the measurement errors.
CTQ247C has a significantly lower H I column density. Our
spectrum does cover the Fe III
transition but
the limit is not very meaningful. However, we can compare Al II
and Al III whose ratio has been shown to exhibit a steady trend
with
N(H I),
a higher fraction of Al III being present
for lower
N(H I)
(Vladilo et al. 2001). We find R = -0.55which is typical of moderate column density DLAs,
.
Repeating the above CLOUDY models with the appropriate H I confirms that the corrections to [S/Fe] will not exceed
0.1 dex in this MDLAs (bottom panel in
Fig. 7). Therefore, we would need to make a small upward
correction to [S/Fe] of up to about 0.1 dex but this does not alter
our conclusions.
We note that the MDLAs toward Q2359-02 both have high
,
indicating relatively high ionization. According to our CLOUDY
models, however, the corrections for [S/Fe] are still negligible
for the corresponding ionization parameter,
while [Si/Fe] requires downward corrections of 0.1-0.2 dex.
From a more general point of view, Fig. 7 tells us that for a typical log N(H I)=20.5 DLA the corrections are downward for Si/Fe and upward for S/Fe, whereas at the low end of H I column densities the [Si/Fe] ratio is significantly more sensitive to ionization than [S/Fe] and both corrections are downward (cf. Prochaska et al. 2002c). Ionization will therefore require downward corrections in [Si/S] but these will not necessarily contribute to the wider spread of MDLA [Si/Fe] values we observe in Fig. 5.
We can quantify the effect of ionization on the
comparative dispersion between [Si/Fe] and [S/Fe] by performing
Monte-Carlo simulations with a grid of
CLOUDY models. To this end, we constructed 2 samples of N=500 CLOUDY
models each, with
("low-ionization" sample) and
("high+low-ionization" sample), and H I column density and
metallicity values uniformly distributed in the ranges
,
.
To simulate our
observations we selected randomly 1 000 sets of 20 DLAs each from the
two samples. Their [X/Fe] distributions are shown in the upper panel
of Fig. 8. The difference between the scatters in
[Si/Fe] and [S/Fe] was calculated as
,
where
is the standard
deviation of
each dataset. The bottom panel of the figure shows the
distribution for both samples.
For the
low+high-ionization sample the probability
of having a wider
scatter in [Si/Fe] is roughly 0.7, while
if the DLAs are drawn exclusively from the low-ionization
sample. This is an indication that ionization does affect the
distributions differentially, although the differences are generally
below measurement errors.
Finally, other possible systematic effects we have to beware of are:
(1) column densities: our
column densities come from
fits whereas the majority of
literature DLAs have AODM
measurements. However, it is well established that both approaches
give essentially same results provided the lines are nonsaturated as
is our case. (2) Solar abundances: solar abundances have undergone
some significant revisions in recent years; all the points in figures 5 and 9 have been put on a common solar
scale. (3) Atomic data: some f-values have changed in recent
years, most
notably Fe II
.
However, this should not be an
issue as long as very few systems rely on only one transition
. (4)
Blending: S II transitions are normally in the forest and therefore
particularly susceptible to contamination. This is especially a
worry if the AODM is
used since it would cause larger
if contamination is
present. Since 40% of literature S measurements
comes from the UCSD database which uses the AODM, in theory we could have
compared our data with overestimations of S/Fe. However, checking in
Prochaska et al. (2001) on a case-by-case basis shows that this is unlikely to be
a problem because the
possibility of contamination was carefully assessed in each case. Even
excluding [S/Fe] points determined by AODM from Fig. 5 still
shows the low S trend in MDLAs. (5) Instrument: almost all literature
abundances come from HIRES data whereas we have used UVES at a
slightly higher resolution. However, some high
/Fe UVES values in
Table 3 and the low
/Fe HIRES value in the MDLAs
toward Q2359-02 show that a possible bias due to different data type
is unfounded.
In summary, we have found that MDLAs exhibit significantly lower [S/Fe], and to a less striking extent, [Si/Fe] ratios than single DLAs
taken from the literature. We have argued that these low values are not
driven by ionization differences or dust depletion, although an observational
bias may be partially responsible for the clearer abundance distinction in S
compared to Si. Having excluded the main systematic effects, these
results therefore imply a nucleosynthetic origin for differences in
abundance ratios between MDLAs and single DLAs.
![]() |
Figure 7:
Ratio of doubly to singly ionized species as a function of ionization
parameter U from CLOUDY models with a Haardt &
Madau (Haardt & Madau 1996) ionizing spectrum.
Top panel: model with
log N(H I)=21.1
and gas metallicity
![]() ![]() ![]() |
Open with DEXTER |
![]() |
Figure 8:
Simulated [S/Fe] and [Si/Fe] distributions (top panel) and
difference between their scatters (bottom panel).
The solid (dotted) histogram shows DLA simulations drawn from a sample of DLAs
with
![]() ![]() |
Open with DEXTER |
If the typically low values of [/Fe] of MDLAs are truly
nucleosynthetic in origin, this may indicate that these systems either
represent a particular galaxy type or that they share a common
evolutionary or environmental link. The first issue to address is
whether the "multiplicity'' is indeed due to more than one distinct galaxy.
Schaye (2001) has suggested that some DLAs may be associated with
winds, in which case MDLAs may be caused by outflowing material
from the parent DLA. Indeed, Nulsen et al. (1998) have shown that large
scale galactic winds can produce column densities equal to those of DLAs.
This could be tested by studying abundances
in systems that are effectively transverse multiple systems, that
is DLAs observed in more than one line of sight separated by many tens
of kpc. The closest example we have of this in the current dataset
is the case of Q0201+1120 (Ellison et al. 2001a) which is located
in a concentration with at least four other galaxies and indeed
shows low [S/Fe], possible evidence that the abundance trend is
symptomatic of a group environment rather than simply
line of sight velocities within a single object.
However, this evidence remains vague in our context of MDLAs as these imaging studies deal only with DLAs without line-of-sight companions. Deep imaging and subsequent spectroscopy of the fields toward CTQ247 and Q2314-409 as well as control fields around QSOs harboring single DLAs is therefore required in order to pursue a comparison of possibly different environments. At higher redshifts, finding evidence for cluster environments of single DLAs (and even the DLA absorbers themselves) has proven difficult (Gawiser et al. 2001; Prochaska et al. 2002a), so much work is still to be done in this direction. Similarly, although several DLA imaging studies have been carried out (e.g., Le Brun et al. 1997), we lack studies of the clustering properties in the DLA fields at z < 1.0 and there are currently no known MDLAs at low redshift.
As suggested in Paper I, the low /Fe abundances observed in MDLAs
might be due to suppressed SF in the galaxies harboring
the absorbing gas. We now raise the
question as to whether environment may cause these observed
abundance anomalies and speculate upon the possibility that MDLAs
arise in "protogalactic groups".
There is a clear trend of galaxies in rich environments out to
to
exhibit suppressed SF, not just in dense cluster cores, but also in clusters
out to 2-3 virial radii (Balogh et al. 1997; Lewis et al. 2002) and perhaps
out to several Mpc (Pimbblet et al. 2001). The
line diagnostics of these galaxies indicate that radial trends are
consistent with an age sequence in which the last episode of star
formation happened most recently in the outermost galaxies (Balogh et al. 1999). However, the physical mechanisms governing this effect are not
clear; violent processes such as ram pressure stripping (e.g.,
Couch et al. 2001 and references therein) and passive
exhaustion of gas supply (e.g., Balogh et al. 1999) are the
two main possibilities. The recent finding by Lewis et al. (2002) that
local density is the dominant parameter in suppressing SF
rates indicates that extreme cluster-scale processes such as
ram-stripping by the ICM play a minor role. These results also point
to the possibility that reduction in SF need not take place within
the gravitational bounds of existing virialized
clusters and may occur already in
looser groups before they are accreted onto larger structures.
This ties in with cluster histories at lower redshifts, because
although Dressler et al. (1999) find a significant
post-starburst population in clusters, there is evidence that this
fraction is not greater than among the field population (Balogh et al. 1999).
If the same physical processes are on-going at high redshifts, then
suppressed SF may be evident in galaxies associated with
early proto-clusters, such as those identified by Steidel et al. (1998),
even though canonical, virialized clusters have yet to form.
Although the abundance ratios for MDLAs that we have discussed here
are distinct from "field'' DLAs, they have typical metallicities
for their redshift (cf. Pettini et al. 1999) and moderate dust content.
These properties are indications that some chemical maturity has
indeed taken place, and MDLAs are similar to other DLAs in terms of
their general enrichment. However, the low [/Fe] is an indication
that what sets MDLAs apart is that they have been evolving quiescently,
without any further major SF episodes, over the last
500 Myrs.
If the low /Fe ratios observed in MDLAs are to be explained by
quiescent SF, then we should expect to see its signature in other
elemental ratios that also act as "cosmic clocks''. The most promising
possibility is the N/
ratio which traces the primary and secondary
contributions from stars of different masses (Henry et al. 2000).
Figure 9 shows the N/
ratio in MDLAs, "field'' DLAs
and H II regions (Pettini et al. 2002).
We only used measurements of O or S in the
plot and corrected S values by the solar S/O ratio (1.54 dex).
Prochaska et al. (2002b) have suggested a bimodal distribution
of N/
and although this needs to be confirmed by more
data, it is clear that a number of DLAs exhibit low ratios. For MDLAs, the ratios are all high, with no points
,
supporting the
quiescent SF scenario. It perhaps indicates more chemical maturity
than average, but also that
the role of massive stars in polluting the ISM of MDLAs may be
less important.
![]() |
Figure 9:
The N/![]() |
Open with DEXTER |
The other established trend with metallicity in Galactic stars is the
odd-even effect. Although this is not technically a chronometer in
the same sense as N and the alpha elements, there is a correlation with
metallicity which may be due to metallicity dependent yields (Goswami & Prantzos 2000).
At our disposal we have
(CTQ247A) and
(CTQ247B), the former of which is among the
highest values in
DLAs of this metallicity (Ledoux et al. 2002; Dessauges-Zavadsky et al.
2002). If these
high ratios are not due to dust depletion (Fe is more depleted in the
local ISM than
Mn) or ionization, they show a mild odd-even effect. Analogously,
in CTQ247C, the highest value ever measured,
and
in B2314-409B (Paper I), which is among
the highest values after the z=2.154 MDLA
toward Q2359-02 (Prochaska & Wolfe 2002).
Altogether, the odd-even effect seems to be mild in those
MDLAs where we can measure it.
Since models of massive star yields
give good agreement with observations of Mn/Fe in Galactic stars
(Goswami & Prantzos 2000; and references therein) and also DLAs (Ledoux et al. 2002),
the lack of
odd-even effect at low metallicity in MDLAs indicates again that
high-mass stars have not been the dominant metal pollutant in
MDLAs. This may be interpreted as
further evidence that there have not been several epochs of SF
building on the enriched interstellar media from previous episodes;
further support of suppressed SF.
We have studied a sample of 7 DLAs with line-of-sight companions,
"multiple'' DLAs in our nomenclature, and 2 DLAs arising in transverse
groups. We have shown that the relative abundances in these two
sub-samples are unusual as compared with single DLAs. In particular,
the [S/Fe] and [Si/Fe] ratios are statistically lower than literature
DLAs, although the effect is more striking in [S/Fe]. We suggest that
this difference is due to (1) an observational bias against measuring
low S column densities because weak S II are usually lost in
the forest; and (2), to a lesser degree, the larger scatter induced in [Si/Fe] by photoionization. Besides low /Fe ratios, MDLAs
also exhibit a mild odd-even effect and relatively high N/
ratios. We interpret these results as truncated star formation in MDLAs. If the multiplicity of these DLAs is due to grouping in
physical space, a thesis we cautiously support, environment may be the
cause of the quiescent SF scenario, just as is observed in more nearby
clusters and groups of galaxies.
Acknowledgements
We are grateful to the anonymous referee for many qualified comments and suggestions on a first version of this paper. We also thank Eric Gawiser for fruitful discussions and comments, Michael Rauch for allowing us to use the FORS data of CTQ247, Max Pettini for providing us with the template for Fig. 9, Mirka Dessauges-Zavadsky for communicating abundances in advance of publication, and Jason Prochaska, whose database at http://kingpin.ucsd.edu/~hiresdla/ we have consulted. SL acknowledges support from the Chilean Centro de Astrofísica FONDAP No. 15010003, and from FONDECYT grant N
.