Table 1: Probabilities of detection for a false alarm rate of 1% for various transit parameters and detectors. $N_{\rm tr}$ is the number of transit, $r_{{\rm obs}}$ is the rate of observations in observations per hour and d is the depth of the transit in normalized magnitude - effectively the S/N of the observations.
Transit parameters Probability of Detection
$N_{\rm tr}$ $r_{{\rm obs}}$ d BLS Bayesian Correlation Matched Filter Deeg's
3 5 0.10 0.0117 0.0105 0.0110 0.0131 0.0122
3 5 0.25 0.0186 0.0155 0.0341 0.0434 0.0380
3 5 0.50 0.1393 0.0500 0.3920 0.4590 0.3617
3 10 0.10 0.0109 0.0111 0.0160 0.0175 0.0156
3 10 0.25 0.0359 0.0244 0.1105 0.1319 0.0887
3 10 0.50 0.5607 0.1445 0.8454 0.8867 0.8014
6 5 0.10 0.0110 0.0111 0.0158 0.0181 0.0152
6 5 0.25 0.0224 0.0179 0.1148 0.1451 0.1084
6 5 0.50 0.4846 0.1136 0.8574 0.8996 0.8193
6 10 0.10 0.0123 0.0123 0.0251 0.0294 0.0225
6 10 0.25 0.0974 0.0339 0.3882 0.4406 0.3052
6 10 0.50 0.9528 0.4460 0.9986 0.9993 0.9951
10 5 0.10 0.0101 0.0113 0.0202 0.0232 0.0184
10 5 0.25 0.0434 0.0216 0.3006 0.3392 0.2311
10 5 0.50 0.8064 0.3017 0.9911 0.9951 0.9863
10 10 0.10 0.0122 0.0118 0.0391 0.0478 0.0342
10 10 0.25 0.2234 0.0595 0.7325 0.7898 0.6319
10 10 0.50 0.9983 0.8371 1.0000 1.0000 1.0000


Source LaTeX | All tables | In the text