Table 4: Best parameters for the BP Tau disk (CO  $J=2\!\!\rightarrow\!\! 1$ data and continuum).
Assumed  distance D (pc)  = 140  
Systemic velocity $V_{\rm LSR}$ (km.s-1) = 6.71 $\pm $ 0.05
Orientation PA  = 57 $\pm 4^{\circ} $
Inclination i  = 28 $\pm 2^{\circ} $
Outer radius $R_{{\rm out}}$ (AU)  = 122 $\pm $ 10
Turbulent linewidth $\Delta v$ (km s-1) = 0.3 $\pm0.1$
Abundance & H2 density law:   $n(r) = n_{100} (\frac{r}{100 \rm {AU}})^{- s}$
$^{12}{\rm CO}$  reference(a) $ X^{12}_{\rm TMC1}$  = $7\times 10^{-5}$ -
$^{12}{\rm CO}$  abundance X( $^{12}{\rm CO}$)  = $4.3\times 10^{-7}$ $\pm $ $0.4\times 10^{-7}$
$^{12}{\rm CO}$  depletion f( $^{12}{\rm CO}$) = 160 $\pm $20
Density(b)      
     at 100 AU n100 (cm-3)  = $3.0\times 10^7$ $\pm $ $0.4\times 10^7$
     exponent s = 3.0 $\pm $0.2
Temperature law:    $T(r)~ = T_{100} (\frac{r}{100~\rm {AU}})^{-q}$
Temperature(c)      
     at 100 AU T100 (K)  = 52 $\pm $ 4
     exponent $q~\simeq$ 0.0-0.5  
   assumed value q = 0.3  
Velocity law:       $V(r) = V_{100} (\frac{r}{100~\rm {AU}})^{-v}$
Velocity at 100 AU V100 (km s-1) = 3.35 $\pm $0.25
Velocity exponent v = 0.52 $\pm $0.04
Stellar mass M* ( $~{M}_{\odot}$) = 1.32 $\pm $ 0.200.12
Surface density law:   $\Sigma(r) = \Sigma_{100} (\frac{r}{100~\rm {AU}})^{- p}$
Surface Density(d)      
     at 100 AU $\Sigma_{100}$  (cm-2)  = $1.3\times 10^{22}$ $0.2\times 10^{22}$
  $\Sigma_{100}$ (g cm-2) = 0.06 0.01
     exponent p $\simeq$ 1.7 $\simeq$0.2
Scale height law:   $H(r) = H_{100} (\frac{r}{100~\rm {AU}})^{- h}$
Scale height      
     at 100 AU H100 (AU)  = 17 -
     exponent $h~\simeq$ 1.35 -
Dust:   $\kappa_\nu = \kappa_o\times(\frac{\nu}
{10^{12}~{\rm Hz}})^{\beta}$
Absorption law $\kappa_o$ = 0.1  
Dust exponent $\beta$ = 0.70 $\pm $0.05
Dust disk size $R_{\rm d}$ (AU)  > 100  
        total mass $M_{\rm d}$ ( $~{M}_{\odot}$)$~\sim$ $1.2\times 10^{-3}$  
The errors are the 1$\sigma $ formal errors from the $\chi ^2$ fit.
(a) $X_{\rm TMC1}$, the $^{12}{\rm CO}$ abundance in TMC 1 is taken from Cernicharo & Guélin 1987. (b,c,d) The temperature is given for q=0.3. The error on the density and temperature do not take into account the coupling with the temperature exponent q.
The CO abundance in the disk $X(^{12}\rm {CO})$ or the depletion $f(^{12}{\rm CO}) =
X(^{12}{\rm CO)}/ X^{12}_{\rm TMC1} $ is obtained by reference to the total disk mass measured from the continuum data (dust).

Source LaTeX | All tables | In the text